3D Person Re-Identification Based on Global Semantic Guidance and Local Feature Aggregation

计算机科学 鉴定(生物学) 特征(语言学) 人工智能 模式识别(心理学) 特征提取 计算机视觉 哲学 植物 生物 语言学
作者
Changshuo Wang,Xin Ning,Weijun Li,Xiao Bai,Xingyu Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4698-4712 被引量:48
标识
DOI:10.1109/tcsvt.2023.3328712
摘要

Person re-identification (Re-ID) has played an extremely crucial role in ensuring social safety and has attracted considerable research attention. 3D shape information is an important clue to understand the posture and shape of pedestrians. However, most existing person Re-ID methods learn pedestrian feature representations from images, ignoring the real 3D human body structure and the spatial relationship between the pedestrians and interferents. To address this problem, our devise a new point cloud Re-ID network (PointReIDNet), designed to obtain 3D shape representations of pedestrians from point clouds of 3D scenes. The model consists of modules, namely global semantic guidance module and local feature extraction module. The global semantic guidance module is designed by enhancing the point cloud feature representation in similar feature neighborhoods and to reduce the interference caused by 3D shape reconstruction or noise. Further, to provide an efficient representation of point clouds, we propose space cover convolution (SC-Conv), which efficiently encodes information on human shapes in local point clouds by constructing anisotropic geometries in the coordinate neighborhoods. Extensive experiments are conducted on four holistic person Re-ID datasets, one occlusion person Re-ID dataset and one point cloud classification dataset. The results exhibit significant improvements over point-cloud-based person Re-ID methods. In particular, the proposed efficient PointReIDNet decreases the number of parameters from 2.30M to 0.35M with an insignificant drop in performance. The source code is available at: https://github.com/changshuowang/PointReIDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI6应助成就的发箍采纳,获得10
2秒前
3秒前
3秒前
小二郎应助lankeren采纳,获得10
3秒前
3秒前
丘比特应助葉芊羽采纳,获得10
4秒前
壑舟完成签到,获得积分10
4秒前
圆锥香蕉应助尊敬的凝丹采纳,获得20
5秒前
YIXIN完成签到,获得积分10
5秒前
5秒前
流云完成签到,获得积分10
5秒前
6秒前
6秒前
sedrakyan发布了新的文献求助10
7秒前
Sunnig盈完成签到,获得积分10
7秒前
酷酷紫蓝发布了新的文献求助10
7秒前
CAO发布了新的文献求助10
8秒前
9秒前
英俊的铭应助悲伤汉堡包采纳,获得10
9秒前
Jesse发布了新的文献求助10
9秒前
9秒前
ViVi水泥要干喽完成签到 ,获得积分10
10秒前
MY完成签到,获得积分10
10秒前
平淡远山完成签到,获得积分10
11秒前
卷羊发布了新的文献求助10
12秒前
12秒前
12秒前
程瑞哲完成签到,获得积分10
13秒前
13秒前
清爽代芹发布了新的文献求助10
13秒前
遗世角落发布了新的文献求助30
14秒前
雨小科完成签到,获得积分10
15秒前
九千七发布了新的文献求助10
15秒前
yang发布了新的文献求助10
15秒前
yuyu发布了新的文献求助10
16秒前
踏实的大神完成签到,获得积分10
17秒前
研友_VZG7GZ应助xxx采纳,获得10
17秒前
科研通AI6应助程瑞哲采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601001
求助须知:如何正确求助?哪些是违规求助? 4686544
关于积分的说明 14844858
捐赠科研通 4679334
什么是DOI,文献DOI怎么找? 2539149
邀请新用户注册赠送积分活动 1506013
关于科研通互助平台的介绍 1471253