Towards more accurate and explainable supervised learning-based prediction of deliverability for underground natural gas storage

基线(sea) 随机森林 自编码 人工神经网络 计算机科学 支持向量机 人工智能 机器学习 数据挖掘 地质学 海洋学
作者
Aliyuda Ali,Kachalla Aliyuda,Nouh Sabri Elmitwally,Abdulwahab Muhammad Bello
出处
期刊:Applied Energy [Elsevier BV]
卷期号:327: 120098-120098 被引量:14
标识
DOI:10.1016/j.apenergy.2022.120098
摘要

Numerous subsurface factors, including geology and fluid properties, can affect the connectivity of the storage spaces in depleted reservoirs; hence, fluid flow simulations become more complicated, and predicting their deliverability remains challenging. This paper applies Machine Learning (ML) techniques to predict the deliverability of underground natural gas storage (UNGS) in depleted reservoirs. First, three baseline models were developed based on Support Vector Regression (SVR), Artificial Neural Network (ANN), and Random Forest (RF) algorithms. To improve the accuracy of the RF model as the best-performing baseline model, a unified framework, referred to as SARF, was developed. SARF combines the capabilities of Sparse Autoencoder (SA) and that of Random Forest (RF). To achieve this, the internal representations of the SA, which constitute extracted features of the input variables, are used in RF to develop the proposed SARF framework. The predictive capabilities of the baseline models and the proposed SARF model were validated using 3744 real-world storage data samples of 52 active storage reservoirs in the United States. The experimental result of this study shows that the proposed SARF model achieved an average 5.7% increase in accuracy on four separate data partitions over the baseline RF model. Furthermore, a set of eXplainable Artificial Intelligence (XAI) methods were developed to provide an intuitive explanation of which factors influence the deliverability of reservoir storage. The visualizations developed using the XAI method provide an easy-to-understand interpretation of how the SARF model predicted the deliverability values for separate reservoirs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sjw525完成签到,获得积分10
刚刚
东方琉璃完成签到,获得积分10
1秒前
捞鱼完成签到,获得积分10
1秒前
平凡世界完成签到 ,获得积分10
1秒前
酷炫抽屉完成签到 ,获得积分10
2秒前
pawpaw009完成签到,获得积分10
2秒前
zxzb完成签到,获得积分10
3秒前
ertredffg完成签到,获得积分10
3秒前
shineshine完成签到 ,获得积分10
3秒前
changyongcheng完成签到 ,获得积分10
3秒前
keyanlv完成签到,获得积分10
3秒前
3秒前
电闪完成签到,获得积分10
4秒前
cai完成签到,获得积分10
5秒前
sulyspr发布了新的文献求助10
5秒前
刘zx完成签到,获得积分10
6秒前
百里康完成签到,获得积分10
7秒前
liu超完成签到,获得积分10
7秒前
SYLH应助Joy采纳,获得10
8秒前
黎明完成签到,获得积分10
8秒前
2012csc完成签到 ,获得积分0
8秒前
曹沛岚完成签到,获得积分10
9秒前
123完成签到 ,获得积分10
10秒前
传奇3应助努力向前看采纳,获得10
10秒前
哆啦A梦完成签到,获得积分10
11秒前
hjc完成签到,获得积分10
11秒前
cxlhzq完成签到,获得积分10
11秒前
畅快的胡萝卜完成签到,获得积分10
12秒前
13秒前
喵喵7完成签到 ,获得积分10
13秒前
青蛙的第二滴口水完成签到,获得积分10
14秒前
细嗅蔷薇完成签到,获得积分10
14秒前
123关注了科研通微信公众号
14秒前
entang完成签到,获得积分10
15秒前
木木完成签到,获得积分10
16秒前
king完成签到 ,获得积分10
17秒前
标致的方盒完成签到,获得积分10
23秒前
自由如天完成签到,获得积分10
23秒前
开心的七完成签到,获得积分10
23秒前
材料小王子完成签到 ,获得积分10
24秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827399
求助须知:如何正确求助?哪些是违规求助? 3369731
关于积分的说明 10457038
捐赠科研通 3089413
什么是DOI,文献DOI怎么找? 1699854
邀请新用户注册赠送积分活动 817542
科研通“疑难数据库(出版商)”最低求助积分说明 770253