Self-Guided Optimization Semi-Supervised Method for Joint Segmentation of Macular Hole and Cystoid Macular Edema in Retinal OCT Images

分割 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 黄斑水肿 计算机视觉 图像分割 视网膜 眼科 医学
作者
Meng Wang,Tian Lin,Yuanyuan Peng,Weifang Zhu,Yi Zhou,Fei Shi,Kai Yu,Qingquan Meng,Yong Liu,Zhongyue Chen,Yuhe Shen,Dehui Xiang,Haoyu Chen,Xinjian Chen
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (7): 2013-2024 被引量:6
标识
DOI:10.1109/tbme.2023.3234031
摘要

Macular hole (MH) and cystoid macular edema (CME) are two common retinal pathologies that cause vision loss. Accurate segmentation of MH and CME in retinal OCT images can greatly aid ophthalmologists to evaluate the relevant diseases. However, it is still challenging as the complicated pathological features of MH and CME in retinal OCT images, such as the diversity of morphologies, low imaging contrast, and blurred boundaries. In addition, the lack of pixel-level annotation data is one of the important factors that hinders the further improvement of segmentation accuracy. Focusing on these challenges, we propose a novel self-guided optimization semi-supervised method termed Semi-SGO for joint segmentation of MH and CME in retinal OCT images. Aiming to improve the model's ability to learn the complicated pathological features of MH and CME, while alleviating the feature learning tendency problem that may be caused by the introduction of skip-connection in U-shaped segmentation architecture, we develop a novel dual decoder dual-task fully convolutional neural network (D3T-FCN). Meanwhile, based on our proposed D3T-FCN, we introduce a knowledge distillation technique to further design a novel semi-supervised segmentation method called Semi-SGO, which can leverage unlabeled data to further improve the segmentation accuracy. Comprehensive experimental results show that our proposed Semi-SGO outperforms other state-of-the-art segmentation networks. Furthermore, we also develop an automatic method for measuring the clinical indicators of MH and CME to validate the clinical significance of our proposed Semi-SGO. The code will be released on Github 1,2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
热情尔岚应助科研八戒采纳,获得10
3秒前
Akim应助怕黑的擎采纳,获得10
4秒前
HDrinnk发布了新的文献求助10
4秒前
4秒前
nana完成签到,获得积分10
5秒前
5秒前
李哈完成签到,获得积分20
5秒前
6秒前
camellia完成签到 ,获得积分10
8秒前
吕小布发布了新的文献求助30
8秒前
Amber发布了新的文献求助10
10秒前
11秒前
12秒前
xxxxxx完成签到,获得积分10
12秒前
小二郎应助lilili采纳,获得10
13秒前
sunny66cai完成签到,获得积分10
13秒前
14秒前
14秒前
彭于晏应助潇洒映冬采纳,获得10
14秒前
hujiwen020发布了新的文献求助10
14秒前
A溶大美噶发布了新的文献求助10
16秒前
汉堡包应助懵懂的小夏采纳,获得10
17秒前
帅帅子完成签到,获得积分10
17秒前
小狗味儿发布了新的文献求助10
17秒前
1123334完成签到,获得积分10
17秒前
怕黑的擎发布了新的文献求助10
18秒前
18秒前
19秒前
独特的绯发布了新的文献求助10
20秒前
21秒前
独特纸鹤完成签到,获得积分10
21秒前
陈小纯完成签到,获得积分10
21秒前
blue完成签到,获得积分10
22秒前
23秒前
自信南霜发布了新的文献求助10
24秒前
科研通AI2S应助ryomasister采纳,获得10
24秒前
hujiwen020完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906161
求助须知:如何正确求助?哪些是违规求助? 3451779
关于积分的说明 10866397
捐赠科研通 3177280
什么是DOI,文献DOI怎么找? 1755311
邀请新用户注册赠送积分活动 848738
科研通“疑难数据库(出版商)”最低求助积分说明 791246