STransUNet: A Siamese TransUNet-Based Remote Sensing Image Change Detection Network

计算机科学 增采样 人工智能 判别式 卷积神经网络 编码器 变压器 特征提取 模式识别(心理学) 解码方法 计算机视觉 算法 图像(数学) 物理 量子力学 电压 操作系统
作者
Yuan Jian,Liejun Wang,Shuli Cheng
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9241-9253 被引量:20
标识
DOI:10.1109/jstars.2022.3217038
摘要

In modern remote sensing image change detection (CD), convolution Neural Network (CNN), especially U-shaped structure (UNet), has achieved great success due to powerful discriminative ability. However, UNet-based CNN networks usually have limitations in modeling global dependencies due to intrinsic locality of convolution operations. Transformer has recently emerged as an alternative architecture for dense prediction tasks due to global self-attention mechanism. However, due to limitation of hardware resources, pure Transformer methods generally lack the ability to capture global information at a low level. Based on these existing problems, we propose STransUNet, which combines Transformer and UNet architecture. STransUNet can not only capture shallow detail features at an early stage, but also model global context in high-level feature. In addition, we design an efficient feature fusion module named Cross-Enhanced Adaptive Fusion(CEAF). Our model mainly consists of three parts: encoder, fusion module and decoder. The decoder is a CNN-Transformer hybrid structure. CNN extracts multi-level feature information. Transformer encodes tokenized sequence to capture global context. CEAF module cross-enhances and adaptively fuses bi-temporal features to enhance feature representation. In decoding stage, we introduce a Cascaded Upsampling decoder(CUP). CUP progressively aggregates low-level CNN features and high-level Transformer features to full resolution. On four public CD datasets, our STransUNet achieves better CD results than six state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助喻白玉采纳,获得10
刚刚
tonight完成签到 ,获得积分0
刚刚
sxx发布了新的文献求助10
刚刚
花满楼发布了新的文献求助10
刚刚
1秒前
Owen应助qixiaoqi采纳,获得10
1秒前
1秒前
1秒前
李爱国应助bluesiryao采纳,获得20
1秒前
David完成签到,获得积分10
2秒前
mi完成签到,获得积分10
2秒前
Joyi完成签到 ,获得积分20
2秒前
打打应助激情的一斩采纳,获得10
2秒前
酷波er应助北开水采纳,获得10
2秒前
2秒前
3秒前
阳光的电脑完成签到,获得积分20
3秒前
动漫大师发布了新的文献求助10
3秒前
3秒前
3秒前
励志小薛发布了新的文献求助10
3秒前
luxujia完成签到,获得积分10
4秒前
NONO完成签到,获得积分10
4秒前
IMxYang应助真实的火车采纳,获得10
4秒前
yyy完成签到,获得积分10
4秒前
科研八戒发布了新的文献求助10
4秒前
4秒前
铭心完成签到,获得积分20
5秒前
5秒前
6秒前
喻白玉完成签到,获得积分10
6秒前
hkf完成签到,获得积分10
6秒前
派大星发布了新的文献求助10
6秒前
小巧蜗牛完成签到,获得积分10
6秒前
顾矜应助自由宛筠采纳,获得10
6秒前
Pink西完成签到,获得积分10
7秒前
7秒前
David发布了新的文献求助10
8秒前
花满楼完成签到,获得积分10
8秒前
万能图书馆应助直率初露采纳,获得10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813105
求助须知:如何正确求助?哪些是违规求助? 3357645
关于积分的说明 10387401
捐赠科研通 3074798
什么是DOI,文献DOI怎么找? 1689018
邀请新用户注册赠送积分活动 812536
科研通“疑难数据库(出版商)”最低求助积分说明 767144