EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training

自回归模型 基础(证据) 通才与专种 培训(气象学) 计算机科学 人工智能 脑电图 心理学 机器学习 计量经济学 数学 政治学 地理 神经科学 生物 生态学 气象学 栖息地 法学
作者
Tongtian Yue,Shuning Xue,Xuange Gao,Yepeng Tang,Longteng Guo,Jie Jiang,Jing Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.19779
摘要

Electroencephalogram (EEG) signals are pivotal in providing insights into spontaneous brain activity, highlighting their significant importance in neuroscience research. However, the exploration of versatile EEG models is constrained by diverse data formats, outdated pre-training paradigms, and limited transfer learning methods, only leading to specialist models on single dataset. In this paper, we introduce EEGPT, the first generalist EEG foundation model designed to address these challenges. First, we propose an electrode-wise modeling strategy that treats each electrode as a fundamental unit, enabling the integration of diverse EEG datasets collected from up to 138 electrodes, amassing 37.5M pre-training samples. Second, we develop the first autoregressive EEG pre-trained model, moving away from traditional masked autoencoder approaches to a next signal prediction task that better captures the sequential and temporal dependencies of EEG data. We also explore scaling laws with model up to 1.1B parameters: the largest in EEG research to date. Third, we introduce a multi-task transfer learning paradigm using a learnable electrode graph network shared across tasks, which for the first time confirms multi-task compatibility and synergy. As the first generalist EEG foundation model, EEGPT shows broad compatibility with various signal acquisition devices, subjects, and tasks. It supports up to 138 electrodes and any combination thereof as input. Furthermore, we simultaneously evaluate it on 5 distinct tasks across 12 benchmarks. EEGPT consistently outperforms existing specialist models across all downstream tasks, with its effectiveness further validated through extensive ablation studies. This work sets a new direction for generalist EEG modeling, offering improved scalability, transferability, and adaptability for a wide range of EEG applications. The code and models will be released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Anhydride发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
马家辉发布了新的文献求助10
5秒前
小肚肚完成签到,获得积分20
6秒前
雾见春发布了新的文献求助30
6秒前
WSGQT完成签到,获得积分10
7秒前
小马甲应助愤怒的梦曼采纳,获得10
7秒前
737完成签到,获得积分10
8秒前
求助文献完成签到,获得积分10
8秒前
9秒前
10秒前
william发布了新的文献求助30
10秒前
737发布了新的文献求助10
11秒前
小鱼完成签到 ,获得积分10
12秒前
科研通AI5应助李卿卫采纳,获得10
12秒前
12秒前
Anhydride完成签到,获得积分10
13秒前
16秒前
CodeCraft应助jefeer采纳,获得10
16秒前
blueblue发布了新的文献求助10
17秒前
秋儿发布了新的文献求助10
17秒前
bc应助谨慎的乐天采纳,获得20
18秒前
端庄的以柳完成签到,获得积分10
20秒前
20秒前
concise完成签到 ,获得积分10
21秒前
小鱼医生完成签到 ,获得积分10
21秒前
木子成发布了新的文献求助10
21秒前
22秒前
liuchenyang完成签到,获得积分10
22秒前
桐桐应助blueblue采纳,获得10
23秒前
Hello应助Oz采纳,获得10
25秒前
马家辉完成签到,获得积分10
25秒前
ni完成签到 ,获得积分10
25秒前
26秒前
赘婿应助lc339采纳,获得10
27秒前
脑洞疼应助木子成采纳,获得10
27秒前
元谷雪发布了新的文献求助10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385945
关于积分的说明 10543154
捐赠科研通 3106726
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774390