Data-Driven COVID-19 Vaccine Development for Janssen

疫苗试验 德尔菲法 德尔菲 2019年冠状病毒病(COVID-19) 大流行 临床试验 疫苗效力 医学 运筹学 计算机科学 接种疫苗 病毒学 人工智能 工程类 传染病(医学专业) 病理 疾病 操作系统
作者
Dimitris Bertsimas,Michael Lingzhi Li,Xinggang Liu,Jennings Xu,Najat Khan
出处
期刊:INFORMS journal on applied analytics [Institute for Operations Research and the Management Sciences]
卷期号:53 (1): 70-84 被引量:2
标识
DOI:10.1287/inte.2022.1150
摘要

The COVID-19 pandemic has spurred extensive vaccine research worldwide. One crucial part of vaccine development is the phase III clinical trial that assesses the vaccine for safety and efficacy in the prevention of COVID-19. In this work, we enumerate the first successful implementation of using machine learning models to accelerate phase III vaccine trials, working with the single-dose Johnson & Johnson vaccine to predictively select trial sites with naturally high incidence rates (“hotspots”). We develop DELPHI, a novel, accurate, policy-driven machine learning model that serves as the basis of our predictions. During the second half of 2020, the DELPHI-driven site selection identified hotspots with more than 90% accuracy, shortened trial duration by six to eight weeks (approximately 33%), and reduced enrollment by 15,000 (approximately 25%). In turn, this accelerated time to market enabled Janssen’s vaccine to receive its emergency use authorization and realize its public health impact earlier than expected. Several geographies identified by DELPHI have since been the first areas to report variants of concern (e.g., Omicron in South Africa), and thus DELPHI’s choice of these areas also produced early data on how the vaccine responds to new threats. Johnson & Johnson has also implemented a similar approach across its business including supporting trial site selection for other vaccine programs, modeling surgical procedure demand for its Medical Device unit, and providing guidance on return-to-work programs for its 130,000 employees. Continued application of this methodology can help shorten clinical development and change the economics of drug development by reducing the level of risk and cost associated with investing in novel therapies. This will allow Johnson & Johnson and others to enable more effective delivery of medicines to patients. Funding: This work was funded by Janssen Research & Development, LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
栗子完成签到,获得积分10
1秒前
缥缈书本完成签到 ,获得积分10
2秒前
wsqg123完成签到,获得积分10
3秒前
tzk完成签到,获得积分10
3秒前
欣欣完成签到 ,获得积分10
3秒前
星如繁花完成签到,获得积分10
5秒前
biozy完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
给我打只山鹰吧完成签到,获得积分10
9秒前
像只猫完成签到,获得积分10
9秒前
凌泉完成签到 ,获得积分10
9秒前
灵巧胜完成签到 ,获得积分10
10秒前
xml完成签到,获得积分20
10秒前
杂菜流完成签到,获得积分10
10秒前
lixia完成签到 ,获得积分10
13秒前
15秒前
benbengouj完成签到,获得积分10
15秒前
大江流完成签到,获得积分10
15秒前
受昂夫发布了新的文献求助10
15秒前
15秒前
JCSY完成签到 ,获得积分10
17秒前
111完成签到,获得积分10
18秒前
小可完成签到,获得积分10
18秒前
麦芽糖完成签到,获得积分10
19秒前
DayLight完成签到,获得积分10
19秒前
elang完成签到,获得积分10
20秒前
清脆半双发布了新的文献求助20
20秒前
啊啊发布了新的文献求助10
21秒前
wanghuiyanyx完成签到,获得积分10
21秒前
梦凡完成签到,获得积分10
21秒前
Cai完成签到,获得积分10
21秒前
Oasis发布了新的文献求助10
21秒前
花阳完成签到 ,获得积分10
23秒前
0109完成签到,获得积分10
24秒前
24秒前
batmanrobin发布了新的文献求助10
26秒前
茗苓完成签到,获得积分10
27秒前
orixero应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715692
求助须知:如何正确求助?哪些是违规求助? 5236513
关于积分的说明 15274839
捐赠科研通 4866396
什么是DOI,文献DOI怎么找? 2612984
邀请新用户注册赠送积分活动 1563107
关于科研通互助平台的介绍 1520618