Estimating Aboveground Biomass of Boreal Forests in Northern China Using Multiple Data sets

泰加语 环境科学 遥感 生物量(生态学) 北方的 中国 自然地理学 林业 地质学 地理 海洋学 古生物学 考古
作者
Jianuo Li,Wurigula Bao,Xuemei Wang,Yingjie Song,Tiantian Liao,Xiaopeng Xu,Meng Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-10 被引量:3
标识
DOI:10.1109/tgrs.2024.3408316
摘要

Accurate estimates of aboveground biomass (AGB) are valuable for monitoring forest degradation and carbon stocks on Earth. However, the validity of multiple data types and diverse data combinations for AGB estimation is unclear. In this study, recursive feature elimination (RFE) combined with machine-learning regression models for AGB were developed using field data and multi-source remote sensing data, which included Sentinel-1, Sentinel-2, PALSAR, and DEM. The spatial distribution of AGB was mapped for the Daxing'anling region in the northernmost part of China at 30m resolution. We compared the ability of multiple data combinations to perform AGB estimation and found that using all four types of data combinations resulted in the highest estimation accuracy with fewer predictors. The combination of diverse data sources substantiates enhancements in the precision of AGB estimation, surpassing the utilization of singular or dual sensor modalities. In addition to the optical remote sensing data sentinel-2, topographic data has a non-negligible role in the AGB estimation in this study, even more than microwave remote sensing data. Finally, the extreme gradient boosting model (R 2 =0.67, RMSE=22.57 Mg/ha) based on the combination of all four data types had the highest accuracy and mapped the AGB of the study area. The results indicate that the AGB can be estimated with reasonable accuracy for the boreal forest region based on publicly available multi-source remote sensing data. This study proposes diverse data combinations as well as derived variables for AGB estimation, aiming to explore the possibilities of more remote sensing data in AGB studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌万达阿迪萨完成签到,获得积分20
刚刚
美好斓发布了新的文献求助10
刚刚
1秒前
2秒前
drinkfish完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
一二发布了新的文献求助10
4秒前
4秒前
老郭发布了新的文献求助10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
5秒前
陈昕炜发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
标致秋尽关注了科研通微信公众号
9秒前
hh完成签到,获得积分10
10秒前
11秒前
JEFF发布了新的文献求助10
12秒前
英俊的铭应助陈昕炜采纳,获得30
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
大模型应助呆呆采纳,获得10
15秒前
15秒前
babao发布了新的文献求助10
16秒前
18秒前
21秒前
猪猪hero应助星海采纳,获得10
22秒前
香蕉觅云应助雨衣采纳,获得10
24秒前
24秒前
25秒前
26秒前
water应助balko采纳,获得10
26秒前
ry发布了新的文献求助30
26秒前
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870749
求助须知:如何正确求助?哪些是违规求助? 3412885
关于积分的说明 10681633
捐赠科研通 3137284
什么是DOI,文献DOI怎么找? 1730852
邀请新用户注册赠送积分活动 834413
科研通“疑难数据库(出版商)”最低求助积分说明 781154