亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inversely optimized design of Al-Mg-Si alloys using machine learning methods

材料科学 冶金 计算机科学
作者
Qiqi Shen,Qiao Yin,Hongliang Zhao,Shuya Zhang,Yuheng Fan,Xianglei Dong,Chunwen Guo
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:242: 113107-113107 被引量:9
标识
DOI:10.1016/j.commatsci.2024.113107
摘要

In this study, the previously reported inverse design strategy for simultaneously optimizing two properties of copper alloys was expanded to concurrently optimize three properties of Al-Mg-Si alloys. Following this strategy, 180 input features based on alloy compositions and corresponding physicochemical parameters were constructed. After feature screening, these input features were refined to 5, 6, and 4 key features for machine learning (ML) models of ultimate tensile strength (UTS), yield strength (YS) and elongation (EL), respectively. Utilizing these key features as inputs, SVR ML models were developed for UTS, YS, and EL. Subsequently, the ML models were employed to predict the properties, and these predictions were assessed using a function MOEI, which reflects the combination of all three properties based on Bayesian principles. The combined properties of the optimized alloy evaluated in this study exceeded the Pareto frontier formed by the initially collected alloys. Experimental analysis highlighted the significant contribution of β'' precipitates to the outstanding combined property of the designed alloy. This study showcases the successful extension of the inverse design strategy to concurrently optimize three properties of Al-Mg-Si alloys, offering valuable insights for future alloy design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王红玉发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
4秒前
6秒前
brian0326发布了新的文献求助10
6秒前
唐唐完成签到 ,获得积分10
13秒前
brian0326完成签到,获得积分10
15秒前
唐泽雪穗发布了新的文献求助130
16秒前
激动的鹰完成签到,获得积分10
19秒前
doctor2023完成签到,获得积分10
24秒前
28秒前
turtle完成签到 ,获得积分10
30秒前
彭于晏应助ling采纳,获得10
32秒前
sweet完成签到 ,获得积分10
35秒前
39秒前
犹豫幻丝完成签到,获得积分10
42秒前
44秒前
JIA发布了新的文献求助10
45秒前
Eason_C完成签到 ,获得积分10
49秒前
李姝仪完成签到 ,获得积分10
54秒前
不抛弃不放弃完成签到,获得积分20
58秒前
zhongxia完成签到 ,获得积分10
1分钟前
1分钟前
Isaac完成签到 ,获得积分10
1分钟前
1分钟前
ling发布了新的文献求助10
1分钟前
orixero应助JIA采纳,获得10
1分钟前
1分钟前
Wang发布了新的文献求助10
1分钟前
1分钟前
星辰大海应助明月清风采纳,获得30
1分钟前
sxy完成签到 ,获得积分10
1分钟前
孙玉杰发布了新的文献求助50
1分钟前
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126532
求助须知:如何正确求助?哪些是违规求助? 4329993
关于积分的说明 13492545
捐赠科研通 4165169
什么是DOI,文献DOI怎么找? 2283273
邀请新用户注册赠送积分活动 1284262
关于科研通互助平台的介绍 1223847