Global-Local Feature Learning Via Dynamic Spatial-Temporal Graph Neural Network in Meteorological Prediction

计算机科学 图形 卷积神经网络 中心性 人工智能 数据挖掘 理论计算机科学 数学 组合数学
作者
Yibi Chen,Kenli Li,Chai Kiat Yeo,Keqin Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 6280-6292 被引量:2
标识
DOI:10.1109/tkde.2024.3397840
摘要

The meteorological environment has a profound impact on global health (e.g., air quality), science and technology (e.g., rocket launches), and economic development (e.g., poverty reduction) etc. Meteorological prediction presents numerous challenges to both academia and industry due to its multifaceted nature which encompasses real-time observations and complex modeling. Recent research adopt graph convolutional recurrent network and establish coordinate information to obtain local spatial-temporal pattern. However, the model only utilizes the local spatial-temporal information and fail to fully consider the dynamic meteorological situation. To address the above limitations, we propose a Dynamic Spatial-Temporal Graph Neural Network (DSTGNN) to learn global-local meteorological features. Specifically, we divide the global spatial-temporal information along the timeline to obtain local spatial-temporal information. For the global aspect, we design a random throwedge module during the neighborhood propagation process in graph neural network (GNN) to extract the features and adapt to the dynamic situation. We also establish convolution operation module to learn the features. Next, we perform information fusion on the two modules to capture sufficient features. In addition, we employ graph ordinary differential equation (ODE) network and utilize the coordinate information to obtain the long-term features and coordinate relationships. In the local aspect, we first construct a GNN to conduct graph embedding. Then, we integrate another GNN into a gated recurrent unit (GRU) and also use the coordinate information to explore the features and coordinate relationships. Finally, we combine the global and local features via a global-local features learning layer for meteorological prediction. Experimental results on the four real-world meteorological datasets show that DSTGNN outperforms the baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李烛尘完成签到,获得积分10
1秒前
xuejie完成签到,获得积分10
2秒前
7秒前
兴奋小丸子完成签到,获得积分10
11秒前
李爱国应助doubleshake采纳,获得10
13秒前
酷波er应助果粒红豆豆采纳,获得10
13秒前
活力沅完成签到,获得积分10
14秒前
熊大对熊二说熊要有个熊样完成签到,获得积分10
15秒前
欢呼海露完成签到,获得积分10
15秒前
无辜牛青完成签到,获得积分10
17秒前
双椒兔丁完成签到 ,获得积分20
19秒前
23秒前
27秒前
cx111发布了新的文献求助10
29秒前
chuling发布了新的文献求助10
31秒前
Ignis发布了新的文献求助10
31秒前
林轩完成签到 ,获得积分10
32秒前
小白应助海与采纳,获得10
33秒前
德鲁猪完成签到,获得积分10
33秒前
思源应助糟糕的铁锤采纳,获得20
33秒前
阿飞飞完成签到,获得积分10
35秒前
xunzhi完成签到 ,获得积分10
37秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
棕熊熊应助科研通管家采纳,获得10
38秒前
斯文败类应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
Orange应助科研通管家采纳,获得10
38秒前
小二郎应助科研通管家采纳,获得10
38秒前
chuling完成签到,获得积分10
38秒前
小郭子应助科研通管家采纳,获得20
38秒前
SciGPT应助科研通管家采纳,获得10
38秒前
38秒前
烟花应助科研通管家采纳,获得10
39秒前
大个应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
Ignis完成签到,获得积分10
40秒前
平常的毛豆应助cx111采纳,获得10
40秒前
lxlcx应助沙不凡采纳,获得20
46秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386184
关于积分的说明 10544072
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711228
邀请新用户注册赠送积分活动 824010
科研通“疑难数据库(出版商)”最低求助积分说明 774409