A Deep Learning Method with Multi-view Attention and Multi-branch GCN for BECT Diagnosis

深度学习 卷积神经网络 癫痫 人工智能 脑电图 计算机科学 睡眠(系统调用) 机器学习 心理学 精神科 操作系统
作者
Lin Zhang,Yun Ren,Fang Yuan,Yangxin Zhu,Shikui Tu,Yucai Chen,Lei Xu
标识
DOI:10.1109/bibm58861.2023.10385445
摘要

Epilepsy is a prevalent chronic neurological disorder in childhood, imposing a heavy burden on patients and their families. The development of deep learning and the accumulation of clinical medical data has led to a surge in neural network algorithms proposed for the automatic detection of childhood epilepsy using electroencephalogram (EEG) signals. However, for Benign Childhood Epilepsy with Centro-Temporal Spikes (BECT), the most common type of childhood epilepsy, there is no large-scale public dataset available for its detection. Moreover, although there were a few studies of BECT using private data, they focused only on identifying the presence of abnormal discharges, ignoring the sleep stage of the discharges, which is actually a critical factor for the doctor's diagnosis. To tackle these challenges, we create a BECT dataset containing more than 38,000 real samples from 100 subjects, meticulously annotated by neurology experts. Building on this dataset, we propose a multi-view attention and multi-branch graph convolutional neural network (MAMB) to differentiate abnormal discharges and classify sleep stages in the samples. Experimental results demonstrate that the model benefits from three-dimensional attention mechanisms in the spatial, temporal, and spectral domains, allowing better exploration of intrinsic relationships within EEG signals. Additionally, the sleep and BECT branches enhance the model's ability to detect abnormal discharges and differentiate various sleep stages. Our model achieves 88.07% and 90.91% accuracy for BECT classification and sleep stage staging, and 81.93% for the four-classification task of simultaneously judging BECT and sleep stage. In addition, the introduction of the multi-view attention mechanism makes the model interpretable and raises hopes of further assisting experts in disease and medication analysis. The implementation code is shown at github 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jun完成签到 ,获得积分10
4秒前
菜鸟队长完成签到 ,获得积分10
4秒前
alixy完成签到,获得积分10
5秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
5秒前
shea应助行毅文采纳,获得10
6秒前
康复小白完成签到 ,获得积分10
8秒前
Kyros完成签到 ,获得积分10
8秒前
8秒前
和平使命应助科研通管家采纳,获得10
11秒前
11秒前
今后应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Shandongdaxiu完成签到 ,获得积分10
12秒前
蔺天宇完成签到,获得积分10
12秒前
喵喵666完成签到,获得积分10
12秒前
花开富贵发布了新的文献求助10
16秒前
zzh完成签到 ,获得积分10
18秒前
蓝桉完成签到 ,获得积分10
19秒前
聪明勇敢有力气完成签到 ,获得积分10
21秒前
土拨鼠完成签到 ,获得积分10
23秒前
虚幻元风完成签到 ,获得积分10
27秒前
29秒前
jjy完成签到,获得积分10
29秒前
MADAO完成签到 ,获得积分10
29秒前
轩辕白竹完成签到,获得积分10
30秒前
xmqaq完成签到,获得积分10
31秒前
Jeffery426完成签到,获得积分10
32秒前
段段砖完成签到 ,获得积分10
36秒前
zhangsan完成签到,获得积分10
37秒前
Uniibooy完成签到 ,获得积分10
38秒前
旅游家完成签到 ,获得积分10
38秒前
顺心怜寒完成签到,获得积分10
40秒前
含糊的无声完成签到 ,获得积分10
42秒前
李露露完成签到 ,获得积分10
45秒前
lizh187完成签到 ,获得积分10
47秒前
shyxia完成签到 ,获得积分10
47秒前
tao完成签到 ,获得积分10
48秒前
华仔应助Jessica采纳,获得30
54秒前
56秒前
KINGAZX完成签到 ,获得积分10
58秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402465
捐赠科研通 3077245
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743