Deep learning-based predictions of gene perturbation effects do not yet outperform simple linear methods

简单(哲学) 摄动(天文学) 计算机科学 人工智能 计量经济学 计算生物学 数学 统计物理学 机器学习 算法 生物 物理 哲学 认识论 量子力学
作者
Constantin Ahlmann-Eltze,Wolfgang Huber,Simon Anders
标识
DOI:10.1101/2024.09.16.613342
摘要

Abstract Advanced deep-learning methods, such as foundation models, promise to learn representations of biology that can be employed to predict in silico the outcome of unseen experiments, such as the effect of genetic perturbations on the transcriptomes of human cells. To see whether current models already reach this goal, we benchmarked five foundation models and two other deep learning models against deliberately simplistic linear baselines. For combinatorial perturbations of two genes for which only the individual single perturbations had been seen, we find that the deep learning-based approaches did not perform better than a simple additive model. For perturbations of genes that had not yet been seen, the deep learning-based approaches did not outper-form the baseline of predicting the mean across the training perturbations. We hypothesize that the poor performance is partially because the pre-training data is observational; we show that a simple linear model reliably outperforms all other models when pre-trained on another perturbation dataset. While the promise of deep neural networks for the representation of biological systems and prediction of experimental outcomes is plausible, our work highlights the need for clear setting of objectives and for critical benchmarking to direct research efforts. Contact constantin.ahlmann@embl.de
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adada完成签到,获得积分20
刚刚
1秒前
彭于晏应助含羞草采纳,获得10
1秒前
浮游应助超cute宁采纳,获得10
1秒前
2秒前
3秒前
3秒前
王鸿鑫发布了新的文献求助10
7秒前
lily_lin完成签到,获得积分10
7秒前
7秒前
邓娅琴发布了新的文献求助10
8秒前
8秒前
王娇完成签到,获得积分10
8秒前
8秒前
8秒前
亭瞳发布了新的文献求助10
8秒前
8秒前
温暖的问候完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
优雅醉山发布了新的文献求助10
11秒前
mkzws完成签到,获得积分10
11秒前
12秒前
害羞的败发布了新的文献求助10
13秒前
FILPPED发布了新的文献求助10
13秒前
CC关闭了CC文献求助
13秒前
可爱的函函应助端庄擎采纳,获得10
14秒前
14秒前
chowjb完成签到,获得积分10
15秒前
15秒前
myf发布了新的文献求助10
16秒前
16秒前
刘琪琪完成签到 ,获得积分10
17秒前
17秒前
梦想家发布了新的文献求助10
17秒前
赵先生应助火星上若蕊采纳,获得10
17秒前
18秒前
完美世界应助药学小团子采纳,获得10
18秒前
优雅醉山完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113