钋
离子液体
电化学
检出限
Nafion公司
化学
电化学气体传感器
化学工程
碳纳米管
生物传感器
电极
材料科学
高分子化学
有机化学
纳米技术
色谱法
催化作用
物理化学
工程类
作者
Kaixin Liu,Mingfei Pan,Liping Hong,Xiaoqian Xie,Jingying Yang,Shan Wang,Zhijuan Wang,Shuo Wang
标识
DOI:10.1016/j.bios.2021.113755
摘要
A hydrophobic carboxyl functionalized phosphonium-based ionic liquid (IL) ((5-carboxypentyl) triphenylphosphonium bis (trifluoromethyl)sulfonyl) amide, TPP-HA[TFSI]) was synthesized through a simple hydrothermal approach. Based on the π-π and cation-π interactions with multi-wall carbon nanotubes (MWCNTs), a TPP-HA[TFSI]@MWCNTs hybrid was prepared to immobilize hemoglobin (Hb) to fabricate a simple and effective electrochemical sensing platform for the detection of methyl parathion (MP) in vegetables. Spectroscopic and electrochemical results show that TPP-HA[TFSI]@MWCNTs substrate synergistically provided a good biocompatible microenvironment for Hb, and the hydrophobicity of TPP-HA[TFSI] and the π-π interaction and hydrogen bonding between TPP-HA[TFSI]@MWCNTs, Hb and nafion (NF) were conducive to maintain the stability and integrity of the modified electrode interface. The TPP-HA[TFSI]@MWCNTs with large surface area and high conductivity promoted the exposure of the electroactive center of Hb and the direct electron transfer between Hb and the electrode, which effectively amplified the electrochemical signal and improved the sensitivity of MP detection. The constructed electrochemical sensing platform had a wider linear range (2-14 ng mL-1) and a lower detection limit (0.62 ng mL-1) for MP, and had acceptable repeatability, reproducibility, stability and anti-interference ability. This results indicated that the phosphonium-based ILs functionalized MWCNTs was an effective substrate for the immobilization of biological components, which have broad prospect in the construction of electrochemical sensing interfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI