Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arthur完成签到 ,获得积分10
1秒前
1秒前
1秒前
温柔的夜柳完成签到,获得积分10
1秒前
tigger完成签到 ,获得积分10
2秒前
单纯乞完成签到,获得积分10
2秒前
myy完成签到,获得积分10
3秒前
小马哥完成签到,获得积分10
3秒前
江雁完成签到,获得积分10
4秒前
科研通AI5应助MrH采纳,获得10
4秒前
润润轩轩发布了新的文献求助10
4秒前
4秒前
李爱国应助Yue采纳,获得10
5秒前
6秒前
薄荷水完成签到,获得积分10
8秒前
wx应助旺阿旺采纳,获得10
8秒前
喜悦的飞机完成签到,获得积分10
10秒前
10秒前
kk发布了新的文献求助10
10秒前
老木虫发布了新的文献求助10
10秒前
ws完成签到,获得积分10
10秒前
10秒前
虎咪咪完成签到,获得积分10
11秒前
11秒前
木子完成签到,获得积分10
11秒前
无奈曼云完成签到,获得积分10
11秒前
heyan完成签到,获得积分10
12秒前
MJS发布了新的文献求助30
12秒前
高贵幻梅应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
彭于彦祖应助科研通管家采纳,获得20
12秒前
许甜甜鸭应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
12秒前
难过板栗应助科研通管家采纳,获得10
12秒前
许甜甜鸭应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
Akim应助caixiaobinger采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
cdercder应助科研通管家采纳,获得30
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837906
求助须知:如何正确求助?哪些是违规求助? 3379958
关于积分的说明 10511877
捐赠科研通 3099610
什么是DOI,文献DOI怎么找? 1707177
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617