Policy Learning with Adaptively Collected Data

计算机科学 后悔 估计员 数学优化 水准点(测量) 数据收集 机器学习 人工智能 数学 统计 大地测量学 地理
作者
Ruohan Zhan,Zhimei Ren,Susan Athey,Zhengyuan Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/mnsc.2023.4921
摘要

In a wide variety of applications, including healthcare, bidding in first price auctions, digital recommendations, and online education, it can be beneficial to learn a policy that assigns treatments to individuals based on their characteristics. The growing policy-learning literature focuses on settings in which policies are learned from historical data in which the treatment assignment rule is fixed throughout the data-collection period. However, adaptive data collection is becoming more common in practice from two primary sources: (1) data collected from adaptive experiments that are designed to improve inferential efficiency and (2) data collected from production systems that progressively evolve an operational policy to improve performance over time (e.g., contextual bandits). Yet adaptivity complicates the problem of learning an optimal policy ex post for two reasons: first, samples are dependent and, second, an adaptive assignment rule may not assign each treatment to each type of individual sufficiently often. In this paper, we address these challenges. We propose an algorithm based on generalized augmented inverse propensity weighted (AIPW) estimators, which nonuniformly reweight the elements of a standard AIPW estimator to control worst case estimation variance. We establish a finite-sample regret upper bound for our algorithm and complement it with a regret lower bound that quantifies the fundamental difficulty of policy learning with adaptive data. When equipped with the best weighting scheme, our algorithm achieves minimax rate-optimal regret guarantees even with diminishing exploration. Finally, we demonstrate our algorithm’s effectiveness using both synthetic data and public benchmark data sets. This paper was accepted by Hamid Nazerzadeh, data science. Funding: This work is supported by the National Science Foundation [Grant CCF-2106508]. R. Zhan was supported by Golub Capital and the Michael Yao and Sara Keying Dai AI and Digital Technology Fund. Z. Ren was supported by the Office of Naval Research [Grant N00014-20-1-2337]. S. Athey was supported by the Office of Naval Research [Grant N00014-19-1-2468]. Z. Zhou is generously supported by the New York University’s 2022–2023 Center for Global Economy and Business faculty research grant and the Digital Twin research grant from Bain & Company. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2023.4921 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
揉揉完成签到,获得积分10
2秒前
砰砰彭发布了新的文献求助10
2秒前
2秒前
2秒前
徐涵完成签到 ,获得积分10
3秒前
bkagyin应助刘隅采纳,获得10
3秒前
可靠之玉发布了新的文献求助10
3秒前
行走人生发布了新的文献求助10
3秒前
要减肥火车完成签到 ,获得积分10
4秒前
12x发布了新的文献求助10
5秒前
6秒前
8秒前
哈哈完成签到,获得积分10
8秒前
9秒前
Owen应助一人一般采纳,获得10
10秒前
青衣完成签到,获得积分10
11秒前
zxcxcxzcxz完成签到,获得积分10
13秒前
shen发布了新的文献求助10
13秒前
13秒前
guojingjing发布了新的文献求助10
14秒前
孙志文完成签到,获得积分10
14秒前
14秒前
镓氧锌钇铀应助刘永红采纳,获得10
14秒前
15秒前
橙子完成签到,获得积分10
15秒前
Epiphany完成签到,获得积分20
16秒前
19秒前
洪云峰发布了新的文献求助10
20秒前
geng发布了新的文献求助30
20秒前
温wen完成签到,获得积分10
21秒前
火星上的毛豆完成签到,获得积分10
21秒前
贤惠的芝发布了新的文献求助10
23秒前
深情安青应助12x采纳,获得10
23秒前
自信鞅完成签到,获得积分10
24秒前
25秒前
安静的迎荷完成签到,获得积分10
25秒前
爱的魔力转圈圈完成签到,获得积分10
25秒前
顺利山柏发布了新的文献求助30
25秒前
哈哈哈发布了新的文献求助10
26秒前
没有稗子完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299605
求助须知:如何正确求助?哪些是违规求助? 4447759
关于积分的说明 13843607
捐赠科研通 4333397
什么是DOI,文献DOI怎么找? 2378808
邀请新用户注册赠送积分活动 1374055
关于科研通互助平台的介绍 1339586