记忆电阻器
材料科学
湿度
相对湿度
电阻式触摸屏
光电子学
拉曼光谱
纳米技术
电气工程
光学
热力学
物理
工程类
作者
Xiaohan Zhang,Xiaoning Zhao,Xuanyu Shan,Qiaoling Tian,Zhongqiang Wang,Ya Lin,Haiyang Xu,Yichun Liu
标识
DOI:10.1021/acsami.1c05590
摘要
Organic-inorganic hybrid halide perovskites (OIHPs) with inherent mixed ionic-electronic conduction ability have been proposed as promising candidates for memristors with unique optoelectronic characteristics. Despite the great achievements toward understanding the working mechanism and exploring their functionality as water-sensitive materials, the humidity effect on the resistive switching (RS) characteristics still remains to be studied. This study investigates the humidity effect on the RS characteristics of Au/CH3NH3PbI3/FTO memristor. The memristor works well at moderate relative humidity (RH, <75%) and degrades rapidly at higher RH of 90%. An obvious decrease in low resistance states on increasing the RH level is observed, which could be attributed to water-induced reduction of the iodide migration barrier. Raman and X-ray diffraction analyses indicate that the migration barrier reduction possibly originated from the weakening of the Pb-I bond caused by the intercalation of water molecules into the crystal lattice. The humidity-sensitive RS characteristics of the memristor could extend the scope of OIHP application for sensing and security applications and also prompt researchers to pay attention to the humidity effect on memristor devices with OIHPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI