Homogeneous-to-Heterogeneous: Unsupervised Learning for RGB-Infrared Person Re-Identification

人工智能 模态(人机交互) RGB颜色模型 计算机科学 判别式 特征学习 特征(语言学) 模式识别(心理学) 机器学习 计算机视觉 哲学 语言学
作者
Wenqi Liang,Guangcong Wang,Jianhuang Lai,Xiaohua Xie
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6392-6407 被引量:33
标识
DOI:10.1109/tip.2021.3092578
摘要

RGB-Infrared (RGB-IR) cross-modality person re-identification (re-ID) is attracting more and more attention due to requirements for 24-h scene surveillance. However, the high cost of labeling person identities of an RGB-IR dataset largely limits the scalability of supervised models in real-world scenarios. In this paper, we study the unsupervised RGB-IR person re-ID problem (or briefly uRGB-IR re-ID) in which no identity annotations are available in RGB-IR cross-modality datasets. Considering that intra-modality (i.e., RGB-RGB or IR-IR) re-ID is much easier than cross-modality re-ID and can provide shared knowledge for RGB-IR re-ID, we propose a two-stage method to solve the uRGB-IR re-ID, namely homogeneous-to-heterogeneous learning. In the first stage, the unsupervised self-learning method is conducted to learn the intra-modality feature representation and to generate the pseudo-labeled identities of person images separately for each modality. In the second stage, heterogeneous learning is used to learn a shared discriminative feature representation by distilling the knowledge from intra-modality pseudo-labels, to align two modalities via a modality-based consistent learning module, and finally to target modality-invariant learning via a pseudo-labeled positive instance selection module. With the use of homogeneous-to-heterogeneous learning, the proposed unsupervised framework greatly reduces the modality gap and thus learns a robust feature representation against RGB and infrared modalities, leading to promising accuracy. We also propose a novel cross-modality re-ranking approach that includes a self-modality search and a cycle-modality search to tailor the uRGB-IR re-ID. Unlike conventional re-ranking, the proposed re-ranking method takes a modality-based constraint into re-ranking and thus can select more reliable nearest neighbors, which greatly improves uRGB-IR re-ID. The experimental results demonstrate the superiority of our approach on the SYSU-MM01 and RegDB datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空想发布了新的文献求助10
刚刚
多多发布了新的文献求助10
刚刚
1秒前
无情元菱完成签到 ,获得积分10
1秒前
1秒前
1秒前
liyi驳回了Jasper应助
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
灵巧的含蕾完成签到,获得积分20
2秒前
秋qiu完成签到,获得积分10
2秒前
wure10完成签到 ,获得积分10
3秒前
3秒前
4秒前
英俊的铭应助芒果采纳,获得10
4秒前
4秒前
大模型应助Hilda007采纳,获得10
6秒前
croiss发布了新的文献求助10
6秒前
6秒前
6秒前
辣辣完成签到,获得积分10
7秒前
老周发布了新的文献求助10
8秒前
搜集达人应助大帅哥采纳,获得10
8秒前
Lucas应助xiang采纳,获得10
9秒前
周周发布了新的文献求助20
9秒前
陌路发布了新的文献求助10
10秒前
二二发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
悠悠应助伍次友采纳,获得10
12秒前
13秒前
小仙旺完成签到,获得积分10
13秒前
炙热的萤发布了新的文献求助10
14秒前
风起人散发布了新的文献求助10
15秒前
无花果应助王zhuo采纳,获得10
15秒前
ZT发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436885
求助须知:如何正确求助?哪些是违规求助? 4548752
关于积分的说明 14216335
捐赠科研通 4469149
什么是DOI,文献DOI怎么找? 2449356
邀请新用户注册赠送积分活动 1440294
关于科研通互助平台的介绍 1416755