Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features

接收机工作特性 医学 切断 无线电技术 曲线下面积 曲线下面积 肝细胞癌 经导管动脉化疗栓塞 放射科 核医学 人工智能 内科学 计算机科学 量子力学 药代动力学 物理
作者
Yuchi Tian,Temitope Emmanuel Komolafe,Tao Chen,Bo Zhou,Xiaodong Yang
出处
期刊:Journal of Medical and Biological Engineering [Springer Science+Business Media]
卷期号:42 (2): 169-178 被引量:8
标识
DOI:10.1007/s40846-022-00692-w
摘要

PurposeTo evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.MethodsRadiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the cutoff value that maximized the AUC value.ResultsAs assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the radiomics-based model with an AUC of 0.848 ± 0.128.ConclusionThe experiment results demonstrate that a feature set that combines radiomics and deep learning features tends to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited amount of data, more data will be needed to verify the effectiveness of this method in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI5应助Sor采纳,获得10
5秒前
黄晓杰2024完成签到 ,获得积分10
5秒前
5秒前
103921wjk发布了新的文献求助10
8秒前
pluto应助科研通管家采纳,获得20
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
HEIKU应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
zmnzmnzmn应助科研通管家采纳,获得10
10秒前
毛哥看文献完成签到 ,获得积分10
10秒前
10秒前
zmnzmnzmn应助科研通管家采纳,获得10
10秒前
10秒前
zmnzmnzmn应助科研通管家采纳,获得10
10秒前
10秒前
消失的岛屿完成签到,获得积分20
14秒前
Sor发布了新的文献求助10
15秒前
17秒前
24秒前
爆米花应助弓雷雷采纳,获得10
24秒前
wanci应助tianshicanyi采纳,获得30
24秒前
Owen应助liuliu采纳,获得10
25秒前
mmyhn发布了新的文献求助10
27秒前
27秒前
28秒前
深情安青应助lilili采纳,获得30
28秒前
31秒前
锦鲤完成签到 ,获得积分10
31秒前
调皮静竹完成签到,获得积分20
32秒前
一大牛一发布了新的文献求助10
32秒前
高是个科研狗完成签到 ,获得积分10
34秒前
科研通AI5应助tgene采纳,获得10
34秒前
乐乐应助Axs采纳,获得200
35秒前
Orange应助wqq采纳,获得10
36秒前
科研通AI2S应助Chem34采纳,获得10
37秒前
一大牛一完成签到,获得积分10
37秒前
clock完成签到 ,获得积分10
39秒前
Fannia发布了新的文献求助10
40秒前
小二郎应助星期一采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440