Noninvasive Diagnosis of Nonalcoholic Steatohepatitis and Advanced Liver Fibrosis Using Machine Learning Methods: Comparative Study With Existing Quantitative Risk Scores

非酒精性脂肪肝 肝硬化 医学 内科学 脂肪变性 肝活检 纤维化 脂肪性肝炎 肝细胞癌 丙氨酸转氨酶 脂肪肝 胃肠病学 机器学习 活检 算法 人工智能 计算机科学 疾病
作者
Yonghui Wu,Xi Yang,Heather Morris,Matthew J. Gurka,Elizabeth Shenkman,Kenneth Cusi,Fernando Bril,William T. Donahoo
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:10 (6): e36997-e36997 被引量:9
标识
DOI:10.2196/36997
摘要

Nonalcoholic steatohepatitis (NASH), advanced fibrosis, and subsequent cirrhosis and hepatocellular carcinoma are becoming the most common etiology for liver failure and liver transplantation; however, they can only be diagnosed at these potentially reversible stages with a liver biopsy, which is associated with various complications and high expenses. Knowing the difference between the more benign isolated steatosis and the more severe NASH and cirrhosis informs the physician regarding the need for more aggressive management.We intend to explore the feasibility of using machine learning methods for noninvasive diagnosis of NASH and advanced liver fibrosis and compare machine learning methods with existing quantitative risk scores.We conducted a retrospective analysis of clinical data from a cohort of 492 patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD), NASH, or advanced fibrosis. We systematically compared 5 widely used machine learning algorithms for the prediction of NAFLD, NASH, and fibrosis using 2 variable encoding strategies. Then, we compared the machine learning methods with 3 existing quantitative scores and identified the important features for prediction using the SHapley Additive exPlanations method.The best machine learning method, gradient boosting (GB), achieved the best area under the curve scores of 0.9043, 0.8166, and 0.8360 for NAFLD, NASH, and advanced fibrosis, respectively. GB also outperformed 3 existing risk scores for fibrosis. Among the variables, alanine aminotransferase (ALT), triglyceride (TG), and BMI were the important risk factors for the prediction of NAFLD, whereas aspartate transaminase (AST), ALT, and TG were the important variables for the prediction of NASH, and AST, hyperglycemia (A1c), and high-density lipoprotein were the important variables for predicting advanced fibrosis.It is feasible to use machine learning methods for predicting NAFLD, NASH, and advanced fibrosis using routine clinical data, which potentially can be used to better identify patients who still need liver biopsy. Additionally, understanding the relative importance and differences in predictors could lead to improved understanding of the disease process as well as support for identifying novel treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观白亦发布了新的文献求助10
1秒前
倩ooo发布了新的文献求助10
1秒前
机智翼完成签到,获得积分10
2秒前
搜集达人应助久等雨归采纳,获得10
3秒前
3秒前
学术蟑螂完成签到,获得积分10
3秒前
青年才俊发布了新的文献求助10
4秒前
赘婿应助Enkcy采纳,获得10
5秒前
5秒前
YumiPg发布了新的文献求助10
5秒前
Target完成签到,获得积分10
5秒前
微笑孤云发布了新的文献求助10
6秒前
着急的寒梦完成签到,获得积分10
6秒前
8秒前
zha完成签到,获得积分10
8秒前
8秒前
9秒前
耶瑟儿发布了新的文献求助10
9秒前
杨雪发布了新的文献求助10
9秒前
9秒前
10秒前
venom应助上上签采纳,获得20
10秒前
10秒前
okarin完成签到,获得积分10
11秒前
11秒前
HARU123发布了新的文献求助10
11秒前
南风发布了新的文献求助10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
哈哈镜阿姐应助CYC采纳,获得10
15秒前
Quincy发布了新的文献求助10
15秒前
善学以致用应助文具盒采纳,获得10
15秒前
美丽的涵菡关注了科研通微信公众号
15秒前
xqxqxqxqxqx发布了新的文献求助10
15秒前
酷波er应助kingmantj采纳,获得10
15秒前
kk发布了新的文献求助10
15秒前
充电宝应助Mid采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088664
求助须知:如何正确求助?哪些是违规求助? 4303552
关于积分的说明 13411963
捐赠科研通 4129232
什么是DOI,文献DOI怎么找? 2261304
邀请新用户注册赠送积分活动 1265411
关于科研通互助平台的介绍 1199913