Noninvasive Diagnosis of Nonalcoholic Steatohepatitis and Advanced Liver Fibrosis Using Machine Learning Methods: Comparative Study With Existing Quantitative Risk Scores

非酒精性脂肪肝 肝硬化 医学 内科学 脂肪变性 肝活检 纤维化 脂肪性肝炎 肝细胞癌 丙氨酸转氨酶 脂肪肝 胃肠病学 机器学习 活检 算法 人工智能 计算机科学 疾病
作者
Yonghui Wu,Xi Yang,Heather Morris,Matthew J. Gurka,Elizabeth Shenkman,Kenneth Cusi,Fernando Bril,William T. Donahoo
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:10 (6): e36997-e36997 被引量:9
标识
DOI:10.2196/36997
摘要

Nonalcoholic steatohepatitis (NASH), advanced fibrosis, and subsequent cirrhosis and hepatocellular carcinoma are becoming the most common etiology for liver failure and liver transplantation; however, they can only be diagnosed at these potentially reversible stages with a liver biopsy, which is associated with various complications and high expenses. Knowing the difference between the more benign isolated steatosis and the more severe NASH and cirrhosis informs the physician regarding the need for more aggressive management.We intend to explore the feasibility of using machine learning methods for noninvasive diagnosis of NASH and advanced liver fibrosis and compare machine learning methods with existing quantitative risk scores.We conducted a retrospective analysis of clinical data from a cohort of 492 patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD), NASH, or advanced fibrosis. We systematically compared 5 widely used machine learning algorithms for the prediction of NAFLD, NASH, and fibrosis using 2 variable encoding strategies. Then, we compared the machine learning methods with 3 existing quantitative scores and identified the important features for prediction using the SHapley Additive exPlanations method.The best machine learning method, gradient boosting (GB), achieved the best area under the curve scores of 0.9043, 0.8166, and 0.8360 for NAFLD, NASH, and advanced fibrosis, respectively. GB also outperformed 3 existing risk scores for fibrosis. Among the variables, alanine aminotransferase (ALT), triglyceride (TG), and BMI were the important risk factors for the prediction of NAFLD, whereas aspartate transaminase (AST), ALT, and TG were the important variables for the prediction of NASH, and AST, hyperglycemia (A1c), and high-density lipoprotein were the important variables for predicting advanced fibrosis.It is feasible to use machine learning methods for predicting NAFLD, NASH, and advanced fibrosis using routine clinical data, which potentially can be used to better identify patients who still need liver biopsy. Additionally, understanding the relative importance and differences in predictors could lead to improved understanding of the disease process as well as support for identifying novel treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助shinn采纳,获得10
刚刚
1秒前
JasonSun发布了新的文献求助10
1秒前
2秒前
2秒前
轻松初阳完成签到 ,获得积分10
2秒前
大口吃肉完成签到,获得积分10
3秒前
4秒前
任驰骋完成签到,获得积分10
4秒前
4秒前
ding应助了该采纳,获得10
5秒前
5秒前
脑洞疼应助清爽语柳采纳,获得10
5秒前
6秒前
dearsunccc发布了新的文献求助10
6秒前
Kuripa完成签到,获得积分10
7秒前
CipherSage应助芒果柠檬采纳,获得10
7秒前
是毛果芸香碱完成签到,获得积分10
8秒前
大口吃肉发布了新的文献求助10
8秒前
任驰骋发布了新的文献求助20
8秒前
海梦喝汽水完成签到,获得积分10
8秒前
青羽落霞完成签到 ,获得积分10
9秒前
海藻发布了新的文献求助10
9秒前
月光族发布了新的文献求助10
9秒前
852应助爱听歌的明轩采纳,获得10
10秒前
xu完成签到,获得积分10
10秒前
有梦想的咸鱼完成签到,获得积分10
11秒前
大意了发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
刘wt完成签到,获得积分10
12秒前
kmkz发布了新的文献求助10
13秒前
13秒前
大森林2025完成签到,获得积分10
14秒前
14秒前
14秒前
qy完成签到,获得积分10
14秒前
JamesPei应助LlieG采纳,获得10
15秒前
852应助橙子采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
聚丙烯腈纤维的辐射交联及对预氧化的影响 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911329
求助须知:如何正确求助?哪些是违规求助? 3456916
关于积分的说明 10892317
捐赠科研通 3183247
什么是DOI,文献DOI怎么找? 1759560
邀请新用户注册赠送积分活动 850991
科研通“疑难数据库(出版商)”最低求助积分说明 792384