A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs

人工智能 支持向量机 计算机科学 梯度升压 机器学习 Boosting(机器学习) 数据挖掘 决策树 预处理器 范畴变量 离群值 模式识别(心理学) 随机森林
作者
Jizhou Tang,Bo Fan,Lizhi Xiao,Shouceng Tian,Fengshou Zhang,Liyuan Zhang,David A. Weitz
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:26 (01): 482-497 被引量:109
标识
DOI:10.2118/204224-pa
摘要

Summary Knowing the location of sweet spots benefits the horizontal well drilling and the selection of perforation clusters. Generally, geoscientists determine sweet spots from the well-logging interpretation. In this paper, a group of prevalent classifiers [extreme gradient boosting (XGBoost), unbiased boosting with categorical features (CatBoost), and light gradient boosting machine (LightGBM)] based on gradient-boosting decision trees (GBDTs) are introduced to automatically determine sweet spots based on well-log data sets. Compared with linear support vector machines (SVMs), these robust algorithms can deal with comparative scales of features and learn nonlinear decision boundaries. Moreover, they are less influenced by the presence of outliers. Another prevailing approach, named generative adversarial networks (GANs), is implemented to augment the training data set by using a small number of training samples. An extensive application has been built for the field cases in a certain oilfield. We randomly select 73 horizontal wells for training, and 13 features are chosen from well-log data sets. Compared with conventional SVMs, the agreement rates of interpretation by XGBoost and CatBoost are significantly improved. Without special preprocessing of the input data sets and conditional tabular GAN (CTGAN) model fine tuning, the fake data set could still bring a relatively low agreement rate for all detections. Finally, we propose an ensemble-learning framework concatenating multilevels of classifiers and improve agreement rate. In this paper, we illustrate a new tool for categorizing the reservoir quality by using GBDTs and ensemble models, which further helps search and identify sweet spots automatically. This tool enables us to integrate experts’ knowledge to the developed model, identify logging curves more efficiently, and cover more sweet spots during the drilling and completion treatment, which immensely decrease the cost of log interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nn完成签到 ,获得积分10
刚刚
zzx完成签到 ,获得积分10
刚刚
罗祥宇发布了新的文献求助10
1秒前
damie完成签到 ,获得积分10
1秒前
2秒前
xixi完成签到,获得积分10
2秒前
2秒前
烟花应助勤劳孤菱采纳,获得10
4秒前
哈哈哈哈哈完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助150
5秒前
5秒前
浮游应助春春采纳,获得10
6秒前
搜集达人应助AJ2采纳,获得10
7秒前
小青椒应助AX采纳,获得30
7秒前
山苍梓完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
阿达完成签到 ,获得积分10
10秒前
大正豪发布了新的文献求助10
10秒前
11秒前
xy完成签到,获得积分10
11秒前
12秒前
12秒前
汉堡包应助愉快白亦采纳,获得10
13秒前
14秒前
15秒前
ADChem_JH发布了新的文献求助10
15秒前
彭于晏应助lmh采纳,获得10
15秒前
15秒前
学术小白发布了新的文献求助10
15秒前
15秒前
16秒前
喜悦一德发布了新的文献求助10
16秒前
wang1457完成签到,获得积分10
16秒前
丙烯酸树脂完成签到,获得积分10
16秒前
17秒前
小马甲应助山头虎采纳,获得10
17秒前
17秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978492
求助须知:如何正确求助?哪些是违规求助? 4231400
关于积分的说明 13179522
捐赠科研通 4022175
什么是DOI,文献DOI怎么找? 2200593
邀请新用户注册赠送积分活动 1213093
关于科研通互助平台的介绍 1129311