纳米金刚石
牛血清白蛋白
溶菌酶
化学
纳米医学
纳米颗粒
色谱法
材料科学
有机化学
生物化学
纳米技术
钻石
作者
Yajuan Zou,Naoki Komatsu
出处
期刊:Carbon
[Elsevier BV]
日期:2020-08-01
卷期号:163: 395-401
被引量:18
标识
DOI:10.1016/j.carbon.2020.02.089
摘要
Interaction at the interface between protein and nanoparticle (NP) surface is of fundamental importance in nanomedicine, because protein corona formation on the NP surface affects the biological identity of the NP. Recently, polyglycerol (PG) has been revealed as a protein free coating for NPs, enabling us to evaluate the net affinity of the specific functional group on the “transparent” NP surface to protein. Herein, PG grafted nanodiamond (ND-PG) was functionalized with carboxyl and amino groups at various densities, and their interaction with proteins including lysozyme (LYS), bovine serum albumin (BSA) and γ-globulin (γ-GLO) were investigated in phosphate buffer saline (PBS). The results show that the carboxylate (-COO–) and ammonium (-NH3+) groups interact exclusively with positively charged LYS, and negatively charged BSA and γ-GLO, respectively, and that the interaction becomes stronger as the functional group density increases. Moreover, the association constants (K) between BSA and the ammonium group on ND-PG are determined and found to correlate linearly with the ammonium group density. The slopes in the linear relationship are proposed to be indices to represent the interaction strength of ammonium group to BSA, enabling the quantitative comparison of the affinity between proteins and various NP surface coatings.
科研通智能强力驱动
Strongly Powered by AbleSci AI