A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma

列线图 接收机工作特性 表皮生长因子受体 腺癌 医学 逻辑回归 放射科 肿瘤科 癌症 内科学
作者
Xiaoqian Lu,Mingyang Li,Huimao Zhang,Shucheng Hua,Fanyang Meng,Hualin Yang,Xueyan Li,Dianbo Cao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (5): 055012-055012 被引量:25
标识
DOI:10.1088/1361-6560/ab6f98
摘要

To predict the epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma using quantitative radiomic biomarkers and semantic features. We analyzed the computed tomography (CT) images and medical record data of 104 patients with lung adenocarcinoma who underwent surgical excision and EGFR mutation detection from 2016 to 2018 at our center. CT radiomic and semantic features that reflect the tumors' heterogeneity and phenotype were extracted from preoperative non-enhanced CT scans. The least absolute shrinkage and selection operator method was applied to select the most distinguishable features. Three logistic regression models were built to predict the EGFR mutation status by combining the CT semantic with clinicopathological characteristics, using the radiomic features alone, and by combining the radiomic and clinicopathological features. Receiver operating characteristic (ROC) curve analysis was performed using five-fold cross-validation and the mean area under the curve (AUC) values were calculated and compared between the models to obtain the optimal model for predicting EGFR mutation. Furthermore, radiomic nomograms were constructed to demonstrate the performance of the model. In total, 1025 radiomic features were extracted and reduced to 13 features as the most important predictors to build the radiomic signature. The combined radiomic and clinicopathological features model was developed based on the radiomic signature, sex, smoking, vascular infiltration, and pathohistological type. The AUC was 0.90 ± 0.02 for the training, 0.88 ± 0.11 for the verification, and 0.894 for the test dataset. This model was superior to the other prediction models that used the combined CT semantic and clinicopathological features (AUC for the test dataset: 0.768) and radiomic features alone (AUC for the test dataset: 0.837). The prediction model built by radiomic biomarkers and clinicopathological features, including the radiomic signature, sex, smoking, vascular infiltration, and pathological type, outperformed the other two models and could effectively predict the EGFR mutation status in patients with peripheral lung adenocarcinoma. The radiomic nomogram of this model is expected to become an effective biomarker for patients with lung adenocarcinoma requiring adjuvant targeted treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
x_x完成签到,获得积分10
1秒前
codwest发布了新的文献求助10
1秒前
todo完成签到,获得积分10
2秒前
天阳完成签到,获得积分10
3秒前
知了完成签到,获得积分10
3秒前
5114完成签到,获得积分10
3秒前
jing完成签到,获得积分10
4秒前
白白白完成签到,获得积分10
4秒前
皑似山上雪完成签到,获得积分10
4秒前
卡布达完成签到,获得积分10
6秒前
紧张的刺猬完成签到,获得积分10
8秒前
llk完成签到,获得积分10
8秒前
CES_SH应助科研通管家采纳,获得20
8秒前
hh应助科研通管家采纳,获得10
8秒前
WHT完成签到,获得积分10
8秒前
了0完成签到 ,获得积分10
9秒前
10秒前
Triumph完成签到,获得积分10
10秒前
坏坏的快乐完成签到,获得积分10
12秒前
123456777完成签到 ,获得积分0
12秒前
豪士赋完成签到,获得积分10
13秒前
槿裡完成签到 ,获得积分10
14秒前
稳重岩完成签到 ,获得积分10
15秒前
殊量完成签到,获得积分10
16秒前
智智完成签到,获得积分10
16秒前
风清扬发布了新的文献求助10
17秒前
遇见完成签到 ,获得积分10
18秒前
Yuan完成签到,获得积分10
19秒前
Ava应助zhanghua采纳,获得10
20秒前
满座完成签到,获得积分10
20秒前
Leo完成签到,获得积分10
21秒前
英俊的铭应助wen_xxx采纳,获得10
22秒前
yumi完成签到,获得积分10
22秒前
22秒前
思源应助智智采纳,获得10
26秒前
Rian发布了新的文献求助10
27秒前
了0完成签到 ,获得积分10
30秒前
杰瑞完成签到,获得积分10
30秒前
Japrin完成签到,获得积分10
31秒前
飞奔的鱼完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807193
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753225
捐赠科研通 3856825
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145502
关于科研通互助平台的介绍 1038054