Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry

散斑噪声 斑点图案 电子散斑干涉技术 数字全息术 人工智能 降噪 计算机科学 全息干涉法 计算机视觉 干涉测量 全息术 噪音(视频) 光学 相(物质) 图像(数学) 物理 量子力学
作者
Kun Yan,Lin Chang,Michalis Andrianakis,Vivi Tornari,Yingjie Yu
出处
期刊:Applied sciences [MDPI AG]
卷期号:10 (11): 4044-4044 被引量:30
标识
DOI:10.3390/app10114044
摘要

This paper presents a new processing method for denoising interferograms obtained by digital holographic speckle pattern interferometry (DHSPI) to serve in the structural diagnosis of artworks. DHSPI is a non-destructive and non-contact imaging method that has been successfully applied to the structural diagnosis of artworks by detecting hidden subsurface defects and quantifying the deformation directly from the surface illuminated by coherent light. The spatial information of structural defects is mostly delivered as local distortions interrupting the smooth distribution of intensity during the phase-shifted formation of fringe patterns. Distortions in fringe patterns are recorded and observed from the estimated wrapped phase map, but the inevitable electronic speckle noise directly affects the quality of the image and consequently the assessment of defects. An effective method for denoising DHSPI wrapped phase based on deep learning is presented in this paper. Although a related method applied to interferometry for reducing Gaussian noise has been introduced, it is not suitable for application in DHSPI to reduce speckle noise. Thus, the paper proposes a new method to remove speckle noise in the wrapped phase. Simulated data and experimental captured data from samples prove that the proposed method can effectively reduce the speckle noise of the DHSPI wrapped phase to extract the desired information. The proposed method is helpful for accurately detecting defects in complex defect topography maps and may help to accelerate defect detection and characterization procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
plasmid完成签到,获得积分10
刚刚
七喜发布了新的文献求助10
1秒前
心灵美的修洁完成签到 ,获得积分10
1秒前
1秒前
1秒前
慕青应助Ruby采纳,获得10
2秒前
lhl发布了新的文献求助10
2秒前
陈帅发布了新的文献求助10
2秒前
7777juju发布了新的文献求助10
3秒前
3秒前
3秒前
刁刁完成签到,获得积分10
3秒前
科研通AI6应助周姮媛采纳,获得10
5秒前
5秒前
大模型应助czx采纳,获得10
5秒前
6秒前
6秒前
6秒前
摩卡桃桃冰完成签到,获得积分10
6秒前
6秒前
琉璃完成签到,获得积分10
7秒前
小冯完成签到 ,获得积分10
7秒前
xinxin完成签到,获得积分10
8秒前
CipherSage应助飞云采纳,获得10
8秒前
8秒前
7ing发布了新的文献求助10
9秒前
9秒前
YIN完成签到,获得积分10
10秒前
little2000完成签到 ,获得积分10
10秒前
QRE发布了新的文献求助20
10秒前
10秒前
彩色大船完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
领导范儿应助伶俐松思采纳,获得10
12秒前
白白胖胖发布了新的文献求助10
12秒前
12秒前
小静吖完成签到 ,获得积分10
12秒前
musei发布了新的文献求助10
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388748
求助须知:如何正确求助?哪些是违规求助? 4511007
关于积分的说明 14037429
捐赠科研通 4421757
什么是DOI,文献DOI怎么找? 2428916
邀请新用户注册赠送积分活动 1421496
关于科研通互助平台的介绍 1400650