数学优化
模式(计算机接口)
最优控制
计算机科学
功能(生物学)
迭代法
过境(卫星)
多项式分布
控制理论(社会学)
控制(管理)
数学
工程类
公共交通
计量经济学
运输工程
进化生物学
人工智能
生物
操作系统
作者
Hai-Jun Huang,Hai Yang
标识
DOI:10.1002/(sici)1099-1514(199911/12)20:6<297::aid-oca662>3.0.co;2-4
摘要
In this paper, an optimal utilization model of a congested transport system with auto/transit parallel modes is formulated using optimal control theory. The model aims at maximizing the net economic benefit over the whole study horizon of time. It is shown that at equilibrium, the mode choice at aggregate demand level is governed by a multinomial exponential function, while for each mode, the generalized costs for all departure times that are actually used are identical. The generalized costs include the optimal variable fares and tolls imposed on transit mode and auto mode commuters, respectively; this transport pricing supports the system optimum as a user equilibrium. An iterative discrete time algorithm using the augmented Lagrangian method is proposed and illustrated with a numerical example. Copyright © 1999 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI