已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project

提高采收率 固碳 粒子群优化 工作流程 石油工程 净现值 储层模拟 工程类 环境科学 计算机科学 二氧化碳 生产(经济) 算法 生物 宏观经济学 经济 数据库 生态学
作者
Junyu You,William Ampomah,Qian Sun,Eusebius Junior Kutsienyo,Robert Balch,Zhenxue Dai,Martha Cather,Xiaoying Zhang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:260: 120866-120866 被引量:95
标识
DOI:10.1016/j.jclepro.2020.120866
摘要

This paper presents a machine learning assisted computational workflow to optimize a CO2-WAG project considering both hydrocarbon recovery and CO2 sequestration efficacies. A compositional field-scaled numerical simulation model is structured to investigate the fluid flow dynamics of an on-going CO2-EOR project in the Farnsworth Unit (Texas, US). Artificial-neural-network (ANN) based proxy models are trained to predict time-series project responses including hydrocarbon production, CO2 storage and reservoir pressure data. The outputs of the proxy model not only serve for evaluating the objective function but also provide significant physical and economic constraints to the optimization processes. In this work, the objective function considers both the oil recovery and CO2 sequestration volume. Moreover, the project net present values (NPV) and reservoir pressure are employed to screen the optimum solutions. The proposed optimization workflow couples the Particle Swarm Optimization (PSO) algorithm and the ANN proxies to maximize the prescribed objective function. The results of this work indicate that the presented workflow is a more robust approach to co-optimize the CO2-EOR projects. Results show that the optimized case can store about 94% of the purchased CO2 within Farnsworth Unit. Comparing to the baseline case, the CO2 storage amount of the found optimal case increases by 21.69%, and the oil production improves 8.74%. More importantly, the improvements in CO2 storage and hydrocarbon recovery lead to 8.74% greater project NPV and 19.79% higher overall objective function value, which confirms the success of the developed co-optimization approach for CO2 sequestration and oil recovery. The lessons and experiences earned from this work provides significant insights into the decision-making process of similar CO2-EOR cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助王冬瓜采纳,获得10
1秒前
ywq发布了新的文献求助10
3秒前
自自自在发布了新的文献求助10
3秒前
Harper发布了新的文献求助10
3秒前
dove_min070809完成签到 ,获得积分10
3秒前
6秒前
6秒前
Cx完成签到,获得积分20
7秒前
小二郎应助小熊猫采纳,获得10
7秒前
9秒前
万豪完成签到,获得积分10
9秒前
LauQ完成签到 ,获得积分10
9秒前
虚心完成签到 ,获得积分10
11秒前
栗子发布了新的文献求助10
11秒前
苏州河发布了新的文献求助10
11秒前
深情的起眸完成签到,获得积分10
11秒前
Cx发布了新的文献求助10
12秒前
自然的宝贝完成签到,获得积分10
12秒前
Wish发布了新的文献求助10
13秒前
自然的思柔完成签到 ,获得积分10
13秒前
13秒前
orixero应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
Lucas应助ComeOn采纳,获得10
14秒前
15秒前
16秒前
小马甲应助苏州河采纳,获得10
17秒前
Ava应助wwww采纳,获得30
17秒前
18秒前
wcx发布了新的文献求助10
18秒前
HEIKU应助pain豆先生采纳,获得10
18秒前
肚子藤完成签到,获得积分10
19秒前
林夕完成签到,获得积分10
21秒前
王冬瓜发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787862
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262111
捐赠科研通 3049278
什么是DOI,文献DOI怎么找? 1673487
邀请新用户注册赠送积分活动 801982
科研通“疑难数据库(出版商)”最低求助积分说明 760458