Competitive non-SELEX for the selective and rapid enrichment of DNA aptamers and its use in electrochemical aptasensor

适体 指数富集配体系统进化 SELEX适体技术 DNA 计算生物学 选择(遗传算法) 生物 化学 组合化学 基因 分子生物学 遗传学 计算机科学 核糖核酸 人工智能
作者
Ankita Kushwaha,Yuzuru Takamura,Koichi Nishigaki,Manish Biyani
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:9 (1) 被引量:22
标识
DOI:10.1038/s41598-019-43187-6
摘要

Abstract The SELEX (Systematic Evolution of Ligands by EXponential enrichment) method has been used successfully since 1990, but work is still required to obtain highly specific aptamers. Here, we present a novel approach called ‘Competitive non-SELEX’ (and termed as ‘SELCOS’ (Systematic Evolution of Ligands by COmpetitive Selection)) for readily obtaining aptamers that can discriminate between highly similar targets. This approach is based on the theoretical background presented here, in which under the co-presence of two similar targets, a specific binding type can be enriched more than a nonspecifically binding one during repetitive steps of partitioning with no PCR amplification between them. This principle was experimentally confirmed by the selection experiment for influenza virus subtype-specific DNA aptamers. Namely, the selection products (pools of DNA aptamers) obtained by SELCOS were subjected to a DEPSOR-mode electrochemical sensor, enabling the method to select subtype-specific aptamer pools. From the clonal analysis of these pools, only a few rounds of in vitro selection were sufficient to achieve the surprisingly rapid enrichment of a small number of aptamers with high selectivity, which could be attributed to the SELCOS principle and the given selection pressure program. The subtype-specific aptamers obtained in this manner had a high affinity (e.g., K D = 82 pM for H1N1; 88 pM for H3N2) and negligible cross-reactivity. By making the H1N1-specific DNA aptamer a sensor unit of the DEPSOR electrochemical detector, an influenza virus subtype-specific and portable detector was readily constructed, indicating how close it is to the field application goal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的蓝发布了新的文献求助10
2秒前
linan完成签到 ,获得积分10
3秒前
老实的新柔完成签到,获得积分20
5秒前
程cc完成签到,获得积分20
6秒前
Lucas发布了新的文献求助10
6秒前
6秒前
xiaotao完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
10秒前
fffff完成签到,获得积分10
10秒前
AAAAA完成签到,获得积分20
12秒前
ZD发布了新的文献求助10
12秒前
Altman完成签到 ,获得积分10
13秒前
General发布了新的文献求助10
13秒前
cheng发布了新的文献求助10
14秒前
许庆川发布了新的文献求助10
14秒前
14秒前
喜东东完成签到,获得积分10
14秒前
皮蛋瘦肉周完成签到,获得积分10
14秒前
suhua发布了新的文献求助10
17秒前
556发布了新的文献求助30
17秒前
17秒前
谦让友绿完成签到,获得积分10
18秒前
19秒前
19秒前
仁和完成签到 ,获得积分10
22秒前
nenoaowu发布了新的文献求助10
23秒前
咩咩羊发布了新的文献求助10
24秒前
25秒前
25秒前
米米发布了新的文献求助10
26秒前
吴彦祖发布了新的文献求助10
26秒前
仙女爱科研完成签到,获得积分10
26秒前
27秒前
ccc完成签到,获得积分20
27秒前
赘婿应助薛定谔不喜欢猫采纳,获得10
28秒前
爱吃年糕发布了新的文献求助20
28秒前
cc完成签到 ,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923706
求助须知:如何正确求助?哪些是违规求助? 3468457
关于积分的说明 10952526
捐赠科研通 3197724
什么是DOI,文献DOI怎么找? 1766772
邀请新用户注册赠送积分活动 856492
科研通“疑难数据库(出版商)”最低求助积分说明 795429