激光器
大气模式
大气光学
光学
计算机科学
材料科学
遥感
物理
气象学
地质学
作者
Wenting Wang,Yingying Yang,Weifang Zhao,Xiao-jing Yi,Jun-wen Ji,Xuechun Lin
摘要
During the process of laser propagation in free space, energy attenuation is brought by atmospheric medium. One of the major problems about laser propagation is that atmospheric component does not remain constant within the whole altitude band. So working out the relatively accurate attenuation coefficient is a research interest of many researches for several years. On this basis of analysis of the atmospheric component distributing characteristic, simple and practical simulate approach was given to meet the needs of laser rangefinder. The main work is the research on 1.06μm YAG laser transmission characteristics in the atmosphere, and the atmosphere loss of the mathematical model is investigated. The paper discussed the influence of atmospheric attenuation on ranging ability of laser rangefinder and analyzed the atmospheric attenuation theoretical. It showed that when the attenuation coefficient γ increases the detectable distance decreases rapidly. In the condition of three transmission modes, which are ground-to-ground mode, ground-to-air mode and air-to-air mode, the relationships between atmospheric transmittance and different visibility, different zenith angle were analyzed. Minimal detectable power of laser rangefinder represents ranging ability in above-mentioned three different modes was formulated with atmospheric transmittance. Based on the results, we can adjust the experimental parameters and achieve more desirable results. It has positive influence for the design of laser rangefinder.
科研通智能强力驱动
Strongly Powered by AbleSci AI