Spatio‐Temporal Hourly and Daily Ozone Forecasting in China Using a Hybrid Machine Learning Model: Autoencoder and Generative Adversarial Networks

自编码 空气质量指数 计算机科学 环境科学 深度学习 气象学 机器学习 数据挖掘 地理
作者
Meiling Cheng,F. Fang,I. M. Navon,Jie Zheng,Xiao Tang,Jiang Zhu,Christopher C. Pain
出处
期刊:Journal of Advances in Modeling Earth Systems [Wiley]
卷期号:14 (3) 被引量:18
标识
DOI:10.1029/2021ms002806
摘要

Abstract Efficient and accurate real‐time forecasting of national spatial ozone distribution is critical to the provision of effective early warning. Traditional numerical air quality models require a high computational cost associated with running large‐scale numerical simulations. In this work, we introduce a hybrid model (VAE‐GAN) combining a generative adversarial network (GAN) with a variational autoencoder (VAE) to learn the dynamic ozone distributions in spatial and temporal spaces. The VAE‐GAN model can not only decipher the complex nonlinear relationship between the inputs (the past states/ozone and meteorological factors) and outputs (ozone), but also provide ozone forecasts for a long lead‐time beyond the training period. The performance of VAE‐GAN is demonstrated in hourly and daily spatio‐temporal ozone forecasts over China. The training datasets from 2013 to 2017 and validation datasets from 2018 to 2019 are the collection of data from the air quality reanalysis datasets. With the use of VAE, large dataset sizes are decreased by three orders of magnitude, enabling hourly and daily forecasts to be computed in seconds. Results show that the VAE‐GAN achieves a reasonable accuracy in the prediction of both the spatial and temporal evolution patterns of hourly and daily ozone fields, as compared to the Nested Air Quality Prediction Modeling System (commonly used in China), the reanalysis data and observations during the validation period. Thus, the VAE‐GAN is a cost‐effective tool for large data‐driven predictions, which can potentially reinforce air pollution prediction efforts in providing risk assessment and management in a timely manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
刚刚
淡定语柔完成签到,获得积分10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
星星亮应助科研通管家采纳,获得20
1秒前
丘比特应助科研通管家采纳,获得20
1秒前
Owen应助科研通管家采纳,获得10
1秒前
奶黄包发布了新的文献求助10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
神羊发布了新的文献求助10
2秒前
cdercder应助科研通管家采纳,获得10
2秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
Jason.Z完成签到,获得积分10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
EasyNan应助科研通管家采纳,获得10
3秒前
充电宝应助启航采纳,获得10
3秒前
3秒前
wwww完成签到 ,获得积分10
3秒前
淡定语柔发布了新的文献求助10
4秒前
4秒前
4秒前
阿玖完成签到 ,获得积分10
4秒前
SYLH应助高大的荔枝采纳,获得10
4秒前
Ryan完成签到,获得积分10
4秒前
欢喜的怜雪完成签到 ,获得积分20
4秒前
超级盼海发布了新的文献求助10
4秒前
顾矜应助冰雪采纳,获得10
5秒前
abc444完成签到,获得积分20
5秒前
甜甜球完成签到,获得积分10
6秒前
6秒前
sanyecai完成签到,获得积分10
6秒前
景明发布了新的文献求助10
6秒前
hx0841完成签到,获得积分10
7秒前
杨111完成签到 ,获得积分10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812032
求助须知:如何正确求助?哪些是违规求助? 3356480
关于积分的说明 10382030
捐赠科研通 3073584
什么是DOI,文献DOI怎么找? 1688326
邀请新用户注册赠送积分活动 812097
科研通“疑难数据库(出版商)”最低求助积分说明 766947