弹道
控制理论(社会学)
控制器(灌溉)
磁道(磁盘驱动器)
计算机科学
路径(计算)
强化学习
跟踪(教育)
运动(物理)
机器人
车辆动力学
人工智能
控制工程
工程类
控制(管理)
航空航天工程
生物
天文
操作系统
物理
程序设计语言
教育学
心理学
农学
作者
Aakarsh Goel,Shubham Chauhan
标识
DOI:10.1145/3478586.3478600
摘要
The trajectory generated by the motion planner depends on various factors such as road curvatures, static and dynamic obstacles, passenger comfort, and road conditions. Geometric path tracking is one of the most critical aspects of path tracking in Autonomous Vehicles. The lateral and longitudinal controllers aim to track the path as closely as possible and minimize along-track and cross-track errors considering the system’s dynamics and latencies present in it. Pure pursuit is one of the simplest geometric tracking controllers having only one parameter to tune, i.e., the look-ahead distance which handles steering aggressiveness. In this paper we propose a novel lateral controller which tunes the look-ahead distance of pure pursuit controller with the help of Deep Deterministic Policy Gradient(DDPG).
科研通智能强力驱动
Strongly Powered by AbleSci AI