Thermoacoustic environment comfort evaluation method based on facial micro-expression recognition

面部表情 表达式(计算机科学) 卷积神经网络 感觉 计算机科学 自然(考古学) 人机交互 人工智能 心理学 语音识别 模拟 社会心理学 考古 历史 程序设计语言
作者
Songtao Hu,Jie Sun,Jun Zhang,Guodan Liu,Shipeng Zhao
出处
期刊:Building and Environment [Elsevier BV]
卷期号:221: 109263-109263 被引量:13
标识
DOI:10.1016/j.buildenv.2022.109263
摘要

At present, subjective questionnaire surveys and physiological parameters measured are mainly used to collect the comprehensive response of humans to the environment, evaluating the environmental comfort subjectively and objectively. However, some measuring instruments make people feel uncomfortable and interfere with the natural state of the human body. Some measuring instruments are too bulky to carry. In addition, the changes in physiological parameters are not synchronized with the changes in human feeling, and there is a lag phenomenon, which cannot immediately reflect the human body current feeling. This study considers that the facial expression is an expression form of human emotion, psychology, and brain activities. When touch, hearing, vision, taste, and smell are stimulated by external factors, the facial expression will change. In view of this, this study examines the thermoacoustic environmental comfort based on facial micro-expression recognition. Firstly, the facial micro-expression database based on environment comfort (FMEEC) is constructed. Secondly, a convolutional neural network (CNN) is used to build the micro-expression recognition model (MERCNN). Finally, the MERCNN model is trained to converge with training and verification samples. The micro-expression images collected in the artificial climate chamber and classroom environment are used to test the model's performance. The evaluation results of the MERCNN are compared with the results of subjective questionnaires and the predicted mean vote (PMV) model. The results show that the MERCNN can accurately evaluate the thermoacoustic environment comfort through face micro-expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
安详从云发布了新的文献求助10
3秒前
科研通AI5应助meimei采纳,获得10
6秒前
6秒前
iidae完成签到,获得积分10
9秒前
溶胶发布了新的文献求助10
9秒前
乐乐应助小小鱼采纳,获得10
11秒前
AWESOME Ling完成签到,获得积分10
14秒前
14秒前
Sarah完成签到,获得积分10
14秒前
wanci应助安详从云采纳,获得10
16秒前
不知道完成签到,获得积分10
17秒前
meimei发布了新的文献求助10
20秒前
Anoxia完成签到,获得积分10
23秒前
婷杰完成签到,获得积分10
24秒前
溶胶完成签到,获得积分10
24秒前
Anoxia发布了新的文献求助10
25秒前
豆浆油条完成签到 ,获得积分10
26秒前
28秒前
NexusExplorer应助跳跃小伙采纳,获得30
29秒前
苹果小玉完成签到,获得积分10
31秒前
科研通AI5应助木野狐采纳,获得10
32秒前
claerMind完成签到 ,获得积分10
34秒前
小小鱼发布了新的文献求助10
34秒前
35秒前
爆米花应助nicelily采纳,获得10
36秒前
有重名的完成签到,获得积分10
40秒前
40秒前
41秒前
Laila完成签到,获得积分10
42秒前
43秒前
积极芷容发布了新的文献求助10
44秒前
木野狐发布了新的文献求助10
46秒前
qcck完成签到,获得积分10
50秒前
51秒前
yu完成签到,获得积分10
52秒前
俏皮连虎完成签到,获得积分10
52秒前
53秒前
keyan完成签到,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921