Self-Supervised Attentive Generative Adversarial Networks for Video Anomaly Detection.

鉴别器 人工智能 计算机科学 生成语法 模式识别(心理学) 异常检测 一般化 任务(项目管理) 构造(python库) 机器学习
作者
Chao Huang,Jie Wen,Yong Xu,Qiuping Jiang,Jian Yang,Yaowei Wang,David Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tnnls.2022.3159538
摘要

Video anomaly detection (VAD) refers to the discrimination of unexpected events in videos. The deep generative model (DGM)-based method learns the regular patterns on normal videos and expects the learned model to yield larger generative errors for abnormal frames. However, DGM cannot always do so, since it usually captures the shared patterns between normal and abnormal events, which results in similar generative errors for them. In this article, we propose a novel self-supervised framework for unsupervised VAD to tackle the above-mentioned problem. To this end, we design a novel self-supervised attentive generative adversarial network (SSAGAN), which is composed of the self-attentive predictor, the vanilla discriminator, and the self-supervised discriminator. On the one hand, the self-attentive predictor can capture the long-term dependences for improving the prediction qualities of normal frames. On the other hand, the predicted frames are fed to the vanilla discriminator and self-supervised discriminator for performing true-false discrimination and self-supervised rotation detection, respectively. Essentially, the role of the self-supervised task is to enable the predictor to encode semantic information into the predicted normal frames via adversarial training, in order for the angles of rotated normal frames can be detected. As a result, our self-supervised framework lessens the generalization ability of the model to abnormal frames, resulting in larger detection errors for abnormal frames. Extensive experimental results indicate that SSAGAN outperforms other state-of-the-art methods, which demonstrates the validity and advancement of SSAGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助梓泽丘墟采纳,获得10
1秒前
yyyy完成签到,获得积分20
2秒前
852应助姚友进采纳,获得10
3秒前
3秒前
SUMING完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
gx完成签到,获得积分10
5秒前
5秒前
junze完成签到,获得积分10
6秒前
och3发布了新的文献求助10
6秒前
7秒前
脑洞疼应助5555采纳,获得10
7秒前
Miracle完成签到,获得积分10
7秒前
8秒前
GS发布了新的文献求助10
8秒前
gx发布了新的文献求助10
9秒前
星辰大海应助zz采纳,获得10
9秒前
9秒前
yyyy发布了新的文献求助10
10秒前
10秒前
11秒前
充电宝应助体贴的尔阳采纳,获得10
11秒前
Akim应助端庄的秋翠采纳,获得10
11秒前
优雅的夜柳完成签到,获得积分10
12秒前
朝颜发布了新的文献求助30
12秒前
wzcy发布了新的文献求助10
13秒前
闾丘晓蓝发布了新的文献求助10
14秒前
Weiwei完成签到,获得积分10
15秒前
16秒前
浮游应助哭泣的兔子采纳,获得10
16秒前
夏大状发布了新的文献求助10
17秒前
百鳴完成签到,获得积分10
17秒前
GS完成签到,获得积分10
17秒前
蓝书签发布了新的文献求助10
18秒前
隐形的若灵完成签到,获得积分10
18秒前
薛定谔的猫完成签到,获得积分10
18秒前
彭于晏应助林筱采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322298
求助须知:如何正确求助?哪些是违规求助? 4463846
关于积分的说明 13891444
捐赠科研通 4355161
什么是DOI,文献DOI怎么找? 2392191
邀请新用户注册赠送积分活动 1385842
关于科研通互助平台的介绍 1355541