Sounding out the hidden data: A concise review of deep learning in photoacoustic imaging

人工智能 深度学习 计算机科学 光声层析成像 断层摄影术 生物医学中的光声成像 机器学习 医学 迭代重建 放射科 物理 光学
作者
Anthony DiSpirito,Tri Vu,Manojit Pramanik,Junjie Yao
出处
期刊:Experimental Biology and Medicine [SAGE Publishing]
卷期号:246 (12): 1355-1367 被引量:12
标识
DOI:10.1177/15353702211000310
摘要

The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores to extract both functional and structural information from deep within tissues. It is this power to perform precise quantitative measurements in vivo—with endogenous or exogenous contrast —that makes photoacoustic tomography highly promising for clinical translation in functional brain imaging, early cancer detection, real-time surgical guidance, and the visualization of dynamic drug responses. Considering photoacoustic tomography has benefited from numerous engineering innovations, it is of no surprise that many of photoacoustic tomography’s current cutting-edge developments incorporate advances from the equally novel field of artificial intelligence. More specifically, alongside the growth and prevalence of graphical processing unit capabilities within recent years has emerged an offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of signal processing, deep learning typically utilizes a method of optimization known as gradient descent to minimize a loss function and update model parameters. There are already a number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting advances that will likely propagate into promising future innovations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ninalee发布了新的文献求助10
2秒前
郑佳豪完成签到 ,获得积分10
2秒前
3秒前
曹玖玖完成签到,获得积分10
3秒前
坚定萤完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
chris发布了新的文献求助30
4秒前
QAQ完成签到,获得积分10
4秒前
yoyo发布了新的文献求助20
4秒前
4秒前
spark完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
小超人哈里完成签到,获得积分10
6秒前
6秒前
彭于晏应助柒_l采纳,获得10
6秒前
tiatia完成签到,获得积分10
6秒前
6秒前
ninalee完成签到,获得积分10
6秒前
落后的安寒完成签到,获得积分10
7秒前
7秒前
马甲甲完成签到,获得积分10
7秒前
curtainai完成签到,获得积分10
8秒前
lw发布了新的文献求助10
9秒前
9秒前
一天不学浑身难受完成签到 ,获得积分10
9秒前
10秒前
Invariant完成签到,获得积分10
10秒前
柠檬西米露完成签到,获得积分10
10秒前
10秒前
万能图书馆应助一米八采纳,获得10
10秒前
DWRH发布了新的文献求助10
10秒前
lynvin发布了新的文献求助10
11秒前
11秒前
12秒前
Etiquette完成签到 ,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977384
求助须知:如何正确求助?哪些是违规求助? 3521618
关于积分的说明 11209205
捐赠科研通 3258725
什么是DOI,文献DOI怎么找? 1799312
邀请新用户注册赠送积分活动 878252
科研通“疑难数据库(出版商)”最低求助积分说明 806810