SA–EMD–LSTM: A novel hybrid method for long-term prediction of classroom PM2.5 concentration

计算机科学 希尔伯特-黄变换 序列(生物学) 短时记忆 期限(时间) 人工智能 光学(聚焦) 模式(计算机接口) 均方预测误差 长期预测 机制(生物学) 机器学习 算法 人工神经网络 循环神经网络 认识论 操作系统 滤波器(信号处理) 光学 物理 生物 哲学 电信 量子力学 遗传学 计算机视觉
作者
Erbiao Yuan,Guangfei Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120670-120670 被引量:15
标识
DOI:10.1016/j.eswa.2023.120670
摘要

The prediction of classroom PM2.5 concentration has practical importance for the management of classroom environment. Most of the existing researches focus on the prediction of indoor carbon dioxide and temperature, and lack of indoor PM2.5 prediction research, especially the long-term predictions in ten minutes or even thirty minutes, which could be more helpful in the practical situations. In this paper, an improved hybrid method, called SA–EMD–LSTM, is proposed to solve the challenge of long-term prediction, which employs the state-of-the-art techniques from machine learning, including self-attention (SA) mechanism, empirical mode decomposition (EMD) algorithm, and long-short term memory (LSTM) network. In this method, firstly, the original PM2.5 sequence is decomposed into several subsequences by the EMD algorithm, which aims to resolve the complex problem into simplified sub-problems. Then, the subsequences are reconstructed with an improved SA mechanism, which aims to figure out the relationship between subsequences. Finally, the reconstructed sequence group is used as the input to the LSTM model, and returns the prediction results for the overall problem. The experimental results show that for prediction in 5–30 min, the R2 of our method reaches 99.63%–95.96%, and the mean absolute error is 1.91 µg/m3–6.31 µg/m3. Compared with the existing methods, our method performs best and improves the prediction accuracy by 46%–28%. And the introduction of SA mechanism reduces the complexity of the problem, saves 83% of running time and 62% of memory consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
愉快彩虹完成签到,获得积分10
4秒前
CallitWYW给听梅的求助进行了留言
5秒前
小果冻发布了新的文献求助10
5秒前
xavier发布了新的文献求助30
6秒前
yang完成签到,获得积分10
6秒前
田様应助Janice采纳,获得10
6秒前
6秒前
10秒前
斯文败类应助XIAOZHU采纳,获得10
11秒前
思源应助细胞的狗奴才采纳,获得10
12秒前
Kestis.完成签到,获得积分10
13秒前
12345发布了新的文献求助10
14秒前
15秒前
15秒前
传奇3应助科研通管家采纳,获得10
17秒前
陈子净应助科研通管家采纳,获得10
17秒前
柏林寒冬应助科研通管家采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
17秒前
qi完成签到,获得积分10
18秒前
冷冷暴力完成签到,获得积分10
19秒前
半凡完成签到 ,获得积分10
19秒前
21秒前
21秒前
核桃发布了新的文献求助10
22秒前
香蕉觅云应助qi采纳,获得30
23秒前
浮游应助xiaixax采纳,获得10
23秒前
23秒前
FashionBoy应助爱文献采纳,获得10
24秒前
深情安青应助杨佳霖采纳,获得10
26秒前
26秒前
XIAOZHU发布了新的文献求助10
27秒前
JamesPei应助sun采纳,获得10
27秒前
科研通AI6应助幸福的颤采纳,获得30
28秒前
29秒前
传奇3应助学习采纳,获得30
29秒前
Blaseaka完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4816553
求助须知:如何正确求助?哪些是违规求助? 4127005
关于积分的说明 12771295
捐赠科研通 3866159
什么是DOI,文献DOI怎么找? 2127538
邀请新用户注册赠送积分活动 1148497
关于科研通互助平台的介绍 1043906