台式压力机
计算机科学
数学
医学
内科学
阻力训练
作者
Roland van den Tillaar,Hallvard Nygaard Falch,Stian Larsen
出处
期刊:PubMed
日期:2025-06-10
标识
DOI:10.1519/jsc.0000000000005160
摘要
van den Tillaar, R, Falch, HN, and Larsen, S. A comparison of maximal push-up and bench press performance and their prediction based on load-velocity relationships. J Strength Cond Res XX(X): 000-000, 2025-This study aimed to compare maximal push-up and bench press performance, and their prediction based on the load-velocity relationships. Eleven resistance-trained men (age 25.3 ± 4.0 years, body mass 84.2 ± 6.1 kg, and body height 1.80 ± 0.06 m) performed push-ups and bench presses with 4 different loads randomly. Push-ups were performed with and without a 10-20-30 kg weight vest. Bench press was performed with similar weights as in the push-ups, followed by finding 1RM in each exercise. A linear encoder measured barbell and push-up velocities during the exercises, and force plates were used to measure the average force on the arms during the push-ups. A load-velocity relationship was established between the load and velocity for the push-up and bench press per subject and the equation used to establish a predicted 1RM. The main findings of this study demonstrate that 1RM for push-ups was significantly higher than with bench press (112.4 ± 18.9 vs. 106.4 ± 20.4 kg); meanwhile, there were no differences in the predicted 1RM. Furthermore, an extremely strong association was observed between the actual 1RM loads performed with the push-up and bench press (r = 0.92). Even with different load-velocity relationships for the 2 exercises, it was possible to predict a cross-over 1RM between them, which was not significantly different from the actual 1RM loads. For coaches and athletes, this method is an easy, cost, and time-effective option for standard 1RM bench press testing to predict maximal upper body strength.
科研通智能强力驱动
Strongly Powered by AbleSci AI