A study of self-diffusion coefficient and prediction model of nano-confined supercritical water

物理 超临界流体 扩散 纳米- 统计物理学 自扩散 热力学 机械 自助服务 营销 量子力学 业务
作者
Bowei Zhang,Jie Zhang,Xiaoyu Li,Hongtu Wu,Tongjia Zhang,Junying Wang,Hui Jin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (4)
标识
DOI:10.1063/5.0268624
摘要

The diffusion of nano-confined fluids plays a crucial role in nano-energy research. We developed three molecular models to calculate the diffusion behavior of both supercritical water (SCW) at 673–1173 K, 250 atm, and room water (300 K, 1 atm), confined in carbon nanotubes (CNTs) ranging from 9.49 to 50.17 Å. We analyzed the diffusion mechanism of water confined in various CNTs using the time coefficient. We calculated the self-diffusion coefficient of water in Fickian-like diffusion mode and examined the factors influencing it. The results indicate that in small-diameter CNT (7,7), SCW primarily follows a Fickian-like diffusion mode, while room temperature (300 K, 1 atm) water exhibits a superdiffusion mode. For CNT diameters larger than 20 Å, both room temperature water and SCW predominantly exhibit Fickian-like diffusion. Additionally, the self-diffusion coefficient of SCW increases linearly with temperature, displaying clear Arrhenius behavior. The self-diffusion activation energy of SCW in different types of CNTs shows a strong correlation with the hydrogen bond structure. Finally, we combined the saturated relationship between CNT diameter and self-diffusion coefficient to propose a predictive model for the self-diffusion coefficient of confined SCW. The model is simple, requiring only three parameters, with a mean absolute relative error of less than 6.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好好1234发布了新的文献求助10
刚刚
我是老大应助张凤采纳,获得10
刚刚
传奇3应助wonder123采纳,获得10
1秒前
siyilin发布了新的文献求助10
2秒前
2秒前
FashionBoy应助坦率的寻双采纳,获得30
2秒前
2秒前
pandon2002完成签到,获得积分10
3秒前
3秒前
乐乐应助gdh采纳,获得10
3秒前
4秒前
amumu发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
小李儿发布了新的文献求助10
5秒前
cherish完成签到,获得积分10
5秒前
催化民工发布了新的文献求助10
6秒前
鲤鱼衬衫发布了新的文献求助10
7秒前
hxw发布了新的文献求助10
9秒前
小布发布了新的文献求助10
9秒前
9秒前
9秒前
Ruby完成签到,获得积分10
10秒前
ha发布了新的文献求助10
10秒前
李爱国应助晓阿路采纳,获得10
10秒前
11秒前
张凤发布了新的文献求助10
11秒前
MBEye发布了新的文献求助10
11秒前
苡熙关注了科研通微信公众号
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
13秒前
ding应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得30
13秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833008
求助须知:如何正确求助?哪些是违规求助? 3375402
关于积分的说明 10488891
捐赠科研通 3095006
什么是DOI,文献DOI怎么找? 1704175
邀请新用户注册赠送积分活动 819834
科研通“疑难数据库(出版商)”最低求助积分说明 771661