Computer-Aided Drug Discovery for Undruggable Targets

化学 药物发现 药品 计算生物学 药理学 生物化学 医学 生物
作者
Qi Sun,Hanping Wang,Juan Xie,Liying Wang,Junxi Mu,Junren Li,Yuhao Ren,Luhua Lai
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:125 (13): 6309-6365 被引量:8
标识
DOI:10.1021/acs.chemrev.4c00969
摘要

Undruggable targets are those of therapeutical significance but challenging for conventional drug design approaches. Such targets often exhibit unique features, including highly dynamic structures, a lack of well-defined ligand-binding pockets, the presence of highly conserved active sites, and functional modulation by protein-protein interactions. Recent advances in computational simulations and artificial intelligence have revolutionized the drug design landscape, giving rise to innovative strategies for overcoming these obstacles. In this review, we highlight the latest progress in computational approaches for drug design against undruggable targets, present several successful case studies, and discuss remaining challenges and future directions. Special emphasis is placed on four primary target categories: intrinsically disordered proteins, protein allosteric regulation, protein-protein interactions, and protein degradation, along with discussion of emerging target types. We also examine how AI-driven methodologies have transformed the field, from applications in protein-ligand complex structure prediction and virtual screening to de novo ligand generation for undruggable targets. Integration of computational methods with experimental techniques is expected to bring further breakthroughs to overcome the hurdles of undruggable targets. As the field continues to evolve, these advancements hold great promise to expand the druggable space, offering new therapeutic opportunities for previously untreatable diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助love采纳,获得10
1秒前
momo完成签到,获得积分10
1秒前
善良丑完成签到 ,获得积分10
2秒前
lin关注了科研通微信公众号
2秒前
AXX041795完成签到,获得积分10
3秒前
3秒前
豆芽菜发布了新的文献求助10
3秒前
030213lzy完成签到,获得积分10
4秒前
4秒前
晴栀发布了新的文献求助10
5秒前
拉拉完成签到,获得积分10
6秒前
璎琅玉微凉完成签到,获得积分10
7秒前
8秒前
慈祥的冰露完成签到,获得积分10
8秒前
me完成签到,获得积分10
8秒前
白羊完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
程风破浪完成签到,获得积分10
9秒前
9秒前
蜗居发布了新的文献求助10
9秒前
毛毛完成签到,获得积分10
10秒前
Jacobsens发布了新的文献求助20
10秒前
10秒前
南风完成签到,获得积分20
11秒前
珂珂发布了新的文献求助10
11秒前
FUTURE发布了新的文献求助200
12秒前
12秒前
Random完成签到,获得积分20
15秒前
CodeCraft应助得鹿梦鱼采纳,获得10
15秒前
16秒前
16秒前
he发布了新的文献求助10
17秒前
17秒前
wanci应助完美笑翠采纳,获得10
17秒前
17秒前
鱼憨儿完成签到,获得积分10
18秒前
无极微光应助晴栀采纳,获得20
18秒前
可爱邓邓发布了新的文献求助10
19秒前
积极的夏天完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514198
求助须知:如何正确求助?哪些是违规求助? 4608120
关于积分的说明 14508732
捐赠科研通 4543952
什么是DOI,文献DOI怎么找? 2489834
邀请新用户注册赠送积分活动 1471765
关于科研通互助平台的介绍 1443710