A Prediction Model of Early Diabetic Nephropathy Based on Conventional Ultrasound Parameters and Hematological Indices and Its Application.

医学 糖尿病肾病 内科学
作者
Ying Cheng,Xiaoyan Li,Ying Ye
出处
期刊:PubMed 卷期号:19 (2): 89-96
标识
DOI:10.52547/bvgedh79
摘要

Diabetic nephropathy (DN) is a chronic microvascular complication of diabetes mellitus, leading to end-stage kidney disease and increased mortality. Early detection and treatment are essential to prevent DN. This study aims to develop a diagnostic prediction model for early DN. Methods. This retrospective analysis study was conducted on 205 patients with type 2 diabetes mellitus (T2DM) treated between September 2019 and September 2022. Patients with stage A1 albumin-to-creatinine ratio (ACR) (< 30 mg/g) were categorized as the simple diabetes mellitus group (n = 134), and those with ACR 30-300 mg/g at stage A2 were classified as the early diabetic nephropathy group (n = 71). Relevant ultrasound parameters and hematological indices were selected through univariate and multivariate screenings. A nomogram model was constructed based on the results of multi-factor screening. Internal validation was performed by using Bootstrap methods with 1000 repetitions, receiver operating characteristic (ROC) curve analysis evaluated model differentiation, calibration curves verified model consistency, and decision curve analysis assessed clinical utility. Results. Multivariate logistic regression identified renal artery resistance index (RI), renal cortex shear wave velocity (SWV), Cystatin C (CysC), Retinol-binding protein (RBP), and Glycated Hemoglobin (HbA1C) as significant factors for early DN (all P < .05). The nomogram model showed good differentiation and consistency and has high clinical value and practicality in predicting DN. The prediction model for early DN, based on conventional ultrasound parameters and hematological indices, demonstrates good prediction efficiency and clinical practicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SH完成签到,获得积分20
刚刚
刚刚
程帅鹏发布了新的文献求助10
刚刚
tsjxs完成签到,获得积分10
刚刚
wanci应助qq采纳,获得10
1秒前
空格TNT完成签到 ,获得积分10
2秒前
2秒前
687完成签到,获得积分10
2秒前
2秒前
奋斗鲂发布了新的文献求助10
2秒前
Tammy发布了新的文献求助10
2秒前
伏可璞完成签到,获得积分10
2秒前
yyyy完成签到,获得积分10
3秒前
自然的霸发布了新的文献求助10
3秒前
4秒前
4秒前
英俊的铭应助Syk_采纳,获得10
5秒前
77发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
打打应助LIU采纳,获得10
7秒前
8秒前
GGBond完成签到 ,获得积分10
8秒前
8秒前
9秒前
体贴八宝粥关注了科研通微信公众号
9秒前
畅快的不言完成签到,获得积分20
10秒前
栗子完成签到 ,获得积分10
10秒前
10秒前
汉堡包应助哆小咪采纳,获得10
10秒前
赘婿应助哆小咪采纳,获得10
10秒前
10秒前
11秒前
风清扬发布了新的文献求助10
11秒前
wanci应助eyu采纳,获得10
11秒前
xiaobaye完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4689158
求助须知:如何正确求助?哪些是违规求助? 4061737
关于积分的说明 12558010
捐赠科研通 3759159
什么是DOI,文献DOI怎么找? 2076091
邀请新用户注册赠送积分活动 1104760
科研通“疑难数据库(出版商)”最低求助积分说明 983769