Guided image generation for improved surgical image segmentation

计算机科学 人工智能 分割 生成模型 生成语法 注释 模式识别(心理学) 图像分割 机器学习
作者
Emanuele Colleoni,Ricardo Sanchez Matilla,Imanol Luengo,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103263-103263 被引量:2
标识
DOI:10.1016/j.media.2024.103263
摘要

The lack of large datasets and high-quality annotated data often limits the development of accurate and robust machine-learning models within the medical and surgical domains. In the machine learning community, generative models have recently demonstrated that it is possible to produce novel and diverse synthetic images that closely resemble reality while controlling their content with various types of annotations. However, generative models have not been yet fully explored in the surgical domain, partially due to the lack of large datasets and due to specific challenges present in the surgical domain such as the large anatomical diversity. We propose Surgery-GAN, a novel generative model that produces synthetic images from segmentation maps. Our architecture produces surgical images with improved quality when compared to early generative models thanks to the combination of channel- and pixel-level normalization layers that boost image quality while granting adherence to the input segmentation map. While state-of-the-art generative models often generate overfitted images, lacking diversity, or containing unrealistic artefacts such as cartooning; experiments demonstrate that Surgery-GAN is able to generate novel, realistic, and diverse surgical images in three different surgical datasets: cholecystectomy, partial nephrectomy, and radical prostatectomy. In addition, we investigate whether the use of synthetic images together with real ones can be used to improve the performance of other machine-learning models. Specifically, we use Surgery-GAN to generate large synthetic datasets which we then use to train five different segmentation models. Results demonstrate that using our synthetic images always improves the mean segmentation performance with respect to only using real images. For example, when considering radical prostatectomy, we can boost the mean segmentation performance by up to 5.43%. More interestingly, experimental results indicate that the performance improvement is larger in the set of classes that are under-represented in the training sets, where the performance boost of specific classes reaches up to 61.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk99123应助Summer采纳,获得10
1秒前
1秒前
斑马兽发布了新的文献求助10
1秒前
1秒前
黑龙体育生完成签到,获得积分10
1秒前
madpony66完成签到,获得积分10
2秒前
愉快飞风完成签到 ,获得积分10
3秒前
sean发布了新的文献求助10
3秒前
舒适的尔容完成签到,获得积分10
3秒前
隐形青筠发布了新的文献求助10
3秒前
肖战战发布了新的文献求助10
4秒前
4秒前
烟花应助狂野谷槐采纳,获得10
4秒前
4秒前
AXIANGGE完成签到,获得积分10
4秒前
ysw发布了新的文献求助10
4秒前
4秒前
5秒前
sh应助寒素采纳,获得10
5秒前
冷萃咖啡完成签到,获得积分10
5秒前
含蓄虔纹发布了新的文献求助10
5秒前
CipherSage应助wu采纳,获得10
5秒前
单身的傲玉完成签到 ,获得积分10
6秒前
赘婿应助学术蝗虫2726采纳,获得10
8秒前
8秒前
yin发布了新的文献求助20
8秒前
余菲完成签到 ,获得积分10
9秒前
3333发布了新的文献求助10
9秒前
10秒前
LXLAN发布了新的文献求助30
10秒前
夏小正完成签到,获得积分10
10秒前
ping发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
Ljr123发布了新的文献求助10
12秒前
小民发布了新的文献求助10
12秒前
所所应助cm357558984采纳,获得10
12秒前
秋凡发布了新的文献求助20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351701
求助须知:如何正确求助?哪些是违规求助? 4484725
关于积分的说明 13960182
捐赠科研通 4384369
什么是DOI,文献DOI怎么找? 2408910
邀请新用户注册赠送积分活动 1401467
关于科研通互助平台的介绍 1374968