Enhancing multimodal depression detection with intra- and inter-sample contrastive learning

判别式 计算机科学 样品(材料) 人工智能 模态(人机交互) 特征(语言学) 机器学习 班级(哲学) 利用 采样(信号处理) 模式识别(心理学) 自然语言处理 语言学 计算机视觉 化学 色谱法 哲学 计算机安全 滤波器(信号处理)
作者
Meiling Li,Yuting Wei,Yangfu Zhu,Siqi Wei,Bin Wu
出处
期刊:Information Sciences [Elsevier]
卷期号:684: 121282-121282 被引量:5
标识
DOI:10.1016/j.ins.2024.121282
摘要

Multimodal depression detection (MDD) has garnered significant interest in recent years. Current methods typically integrate multimodal information within samples to distinguish positive from negative samples, but they often neglect the relationships between samples. Despite similarities within the same class, individual variations exist. By leveraging these relationships, we can provide supervision signals for both inter- and intra-class samples, thereby enhancing the discriminative power of user representations. Inspired by this observation, we introduce IISFD, a novel approach that concurrently exploits intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. This method comprehensively considers information both within individual samples and across samples. Specifically, we decompose the multimodal inputs of each sample, including audio, vision and text, into modality-common features and modality-specific features. To obtain better decomposed feature representations, we integrate intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. Additionally, detailed modal information is obtained through unimodal reconstruction. By passing the decomposed features through a carefully designed multimodal fusion module, we obtain more discriminative user representations. Experimental results on two publicly available datasets demonstrate the superiority of our model, highlighting its effectiveness in leveraging both intra- and inter-sample information for enhanced MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八月宁静发布了新的文献求助10
刚刚
哪位完成签到,获得积分10
1秒前
科研通AI6应助mera采纳,获得10
1秒前
mashibeo完成签到,获得积分0
1秒前
完美世界应助fangplus采纳,获得10
1秒前
斯文败类应助GGMJ采纳,获得10
2秒前
2秒前
孤独的凤发布了新的文献求助10
2秒前
胡导家的菜狗完成签到 ,获得积分10
3秒前
华仔应助李杰采纳,获得10
4秒前
桐桐应助Evander采纳,获得10
5秒前
胡亚楠完成签到,获得积分10
5秒前
ysy完成签到,获得积分10
6秒前
JamesPei应助哈哈哈采纳,获得10
7秒前
ZRR发布了新的文献求助10
8秒前
Cy-coolorgan发布了新的文献求助10
8秒前
充电宝应助刻苦念桃采纳,获得10
8秒前
bkagyin应助哈哈采纳,获得10
10秒前
10秒前
赵俊博完成签到,获得积分20
11秒前
爆米花应助昏睡的朝雪采纳,获得10
12秒前
ysy完成签到,获得积分10
12秒前
孤独的凤完成签到,获得积分10
12秒前
Evander完成签到,获得积分10
12秒前
小熊猫完成签到,获得积分10
13秒前
浮游应助77采纳,获得10
14秒前
科研通AI6应助77采纳,获得10
14秒前
15秒前
bkagyin应助zaphkiel采纳,获得10
16秒前
Cy-coolorgan完成签到,获得积分10
16秒前
ZRR完成签到,获得积分10
16秒前
JamesPei应助苦学僧采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
Qwe完成签到,获得积分10
19秒前
engine完成签到,获得积分10
20秒前
yy完成签到,获得积分10
23秒前
英俊的铭应助liusha采纳,获得10
25秒前
科目三应助柔弱的苗条采纳,获得10
27秒前
科研通AI6应助自觉绿草采纳,获得10
27秒前
muqi完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073