Interactive Hybrid Model for Remaining Useful Life Prediction With Uncertainty Quantification of Bearing in Nuclear Circulating Water Pump

方位(导航) 可靠性(半导体) 人工神经网络 降级(电信) 非线性系统 计算机科学 过程(计算) 不确定度量化 可靠性工程 工程类 人工智能 机器学习 操作系统 物理 电信 功率(物理) 量子力学
作者
Wei Cheng,Shushuai Xie,Ji Xing,Zelin Nie,Xuefeng Chen,Yilong Liu,Xue Liu,Qian Huang,Rongyong Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 2154-2166 被引量:32
标识
DOI:10.1109/tii.2023.3288225
摘要

Journal bearings are the key components of the nuclear circulating water pump (NCWP), and accurate remaining useful life (RUL) prediction is of great significance for improving the reliability, safety, and maintenance planning of NCWP. However, it is difficult to quantify the uncertainty of bearing RUL based on the current deep learning (DL) model, resulting in a lack of credibility and effective convincing for RUL predicted by the model. Meanwhile, all existing hybrid models are basically simple combinations, and they cannot solve the uncertainty quantification problem of RUL predicted by DL. Hence, the bearing RUL prediction method based on a dynamic interactive hybrid model is proposed. First, a degradation model based on a nonlinear enhanced generalized Wiener process (EGWP) is proposed, which combines gated neural networks and time-varying drift coefficients to describe the nonlinear degradation process of bearing. Then, a corrective gated recurrent unit (CGRU) network is designed to learn and predict real-time degradation increments, and the parameters of the degradation model are dynamically updated through the history and prediction of degradation increments. Finally, the bearing RUL prediction is given by the CGRU network, and the probability density function of RUL is given by the proposed hybrid model. The performance of the proposed method is evaluated using the PHM 2012 bearing dataset and the NCWP journal bearing dataset. The results show that our proposed method can effectively predict bearing RUL and its uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
乔尔司空完成签到,获得积分10
刚刚
王俊凯完成签到,获得积分10
1秒前
仙兮熙完成签到 ,获得积分10
3秒前
4秒前
刘zy完成签到,获得积分10
5秒前
大个应助Postmalone采纳,获得10
6秒前
传奇3应助小米采纳,获得10
8秒前
mikiyoo发布了新的文献求助10
8秒前
10秒前
默默鞋子完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
小小鹿完成签到 ,获得积分20
13秒前
14秒前
Postmalone完成签到,获得积分10
14秒前
amnesiamber发布了新的文献求助10
14秒前
wuji2077发布了新的文献求助10
15秒前
动听的易巧完成签到,获得积分20
16秒前
英姑应助mikiyoo采纳,获得10
16秒前
18秒前
19秒前
英姑应助凤凰院凶真采纳,获得10
20秒前
21秒前
霖夏发布了新的文献求助10
23秒前
kw98完成签到 ,获得积分10
23秒前
张毅德完成签到 ,获得积分10
23秒前
kathy完成签到,获得积分10
24秒前
amnesiamber完成签到,获得积分10
25秒前
25秒前
yibo完成签到,获得积分10
25秒前
钉钉完成签到 ,获得积分10
26秒前
不安海蓝完成签到,获得积分10
27秒前
l0000完成签到,获得积分10
27秒前
南湖完成签到 ,获得积分10
27秒前
29秒前
kyJYbs完成签到,获得积分10
29秒前
30秒前
恋晨完成签到 ,获得积分10
30秒前
tiantian完成签到 ,获得积分10
31秒前
niko发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495075
求助须知:如何正确求助?哪些是违规求助? 4592818
关于积分的说明 14438859
捐赠科研通 4525641
什么是DOI,文献DOI怎么找? 2479542
邀请新用户注册赠送积分活动 1464393
关于科研通互助平台的介绍 1437290