Detection of Chylous Plasma Based on Machine Learning and Hyperspectral Techniques

决策树 人工智能 高光谱成像 模式识别(心理学) 计算机科学 树(集合论) 随机森林 特征(语言学) 鉴定(生物学) 机器学习 数学 语言学 植物 生物 数学分析 哲学
作者
Yafei Liu,Jianxiu Lai,Liying Hu,Meiyan Kang,Siqi Wei,Suyun Lian,Haijun Huang,Hao Cheng,Mengshan Li,Lixin Guan
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:78 (4): 365-375
标识
DOI:10.1177/00037028231214802
摘要

Chylous blood is the main cause of unqualified and scrapped blood among volunteer blood donors. Therefore, a diagnostic method that can quickly and accurately identify chylous blood before donation is needed. In this study, the GaiaSorter “Gaia” hyperspectral sorter was used to extract 254 bands of plasma images, ranging from 900 nm to 1700 nm. Four different machine learning algorithms were used, including decision tree, Gaussian Naive Bayes (GaussianNB), perceptron, and stochastic gradient descent models. First, the preliminary classification accuracies were compared with the original data, which showed that the effects of the decision tree and GaussianNB models were better; their average accuracies could reach over 90%. Then, the feature dimension reduction was performed on the original data. The results showed that the effects of the decision tree were better with a classification accuracy of 93.33%. the classification of chylous plasma using different chylous indices suggested that the accuracies of the decision trees model both before and after the feature dimension reductions were the best with over 80% accuracy. The results of feature dimension reduction showed that the characteristic bands corresponded to all kinds of plasma, thereby showing their classification and identification potential. By applying the spectral characteristics of plasma to medical technology, this study suggested a rapid and effective method for the identification of chylous plasma and provided a reference for the blood detection technology to achieve the goal of reducing wasting blood resources and improving the work efficiency of the medical staff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSQY发布了新的文献求助10
刚刚
脑洞疼应助hhhhhhh采纳,获得10
刚刚
1秒前
1秒前
1秒前
拼搏向上完成签到,获得积分10
2秒前
3秒前
尊敬的斑马完成签到,获得积分20
3秒前
3秒前
3秒前
无言完成签到,获得积分10
4秒前
笋蒸鱼发布了新的文献求助10
6秒前
知足肠乐完成签到,获得积分0
6秒前
7秒前
西米发布了新的文献求助30
7秒前
keikei完成签到,获得积分10
7秒前
天天快乐应助生生采纳,获得30
8秒前
yiyi发布了新的文献求助10
8秒前
8秒前
9秒前
研友_VZG7GZ应助朴素代秋采纳,获得10
9秒前
应飞飞完成签到,获得积分10
11秒前
风清扬应助马子意采纳,获得10
12秒前
12秒前
西大喜发布了新的文献求助10
12秒前
脑洞疼应助江鱼采纳,获得10
13秒前
耶耶拿铁发布了新的文献求助10
13秒前
FashionBoy应助xiangrikui采纳,获得10
13秒前
勇毅前行完成签到,获得积分10
14秒前
小古发布了新的文献求助20
14秒前
15秒前
15秒前
16秒前
melon发布了新的文献求助10
16秒前
17秒前
薛枫完成签到 ,获得积分10
17秒前
17秒前
Shamray应助井中月采纳,获得20
17秒前
勇毅前行发布了新的文献求助10
18秒前
916应助开心鼠标采纳,获得10
18秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250