Unsupervised Point Cloud Co-Part Segmentation via Co-Attended Superpoint Generation and Aggregation

计算机科学 分割 云计算 点云 点(几何) 人工智能 几何学 数学 操作系统
作者
Ardian Umam,Cheng-Kun Yang,Jen‐Hui Chuang,Yen‐Yu Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7775-7786 被引量:1
标识
DOI:10.1109/tmm.2024.3371294
摘要

We propose a co-part segmentation method that takes a set of point clouds of the same category as input where neither a ground truth label nor a prior network is required. With difficulties caused by the label absence, we formulate the co-part segmentation task into two subtasks, including superpoint generation and part aggregation. In the first subtask, our superpoint generation network divides each point cloud into homogeneous partitions, each called superpoint, while in the second subtask, these superpoints are further aggregated into a few semantic parts via our part aggregation network. We introduce the coupled attention blocks in the part aggregation network to explicitly enforce semantic consistency in the segmentation by exploiting intra-, inter-, and paired-cloud geometrical information by minimizing the devised intra-, inter-, and paired-cloud losses, respectively. The intra-cloud loss triggers a semantic segmentation in each point cloud, while the inter-cloud loss considers all clouds to enforce their semantic consistency. The paired-cloud loss is designed to ensure that each part of one point cloud can be discriminatively reconstructed from the superpoints of another point cloud. We perform experiments on two benchmark datasets, ShapeNet part and COSEG, and provide quantitative and qualitative results to demonstrate the superiority of our method over existing methods. We also show that the proposed method can help several downstream tasks, including semi-supervised part segmentation and data augmentation for shape classification. The code for this work will be publicly available upon the paper's publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助shanp采纳,获得10
刚刚
2秒前
4秒前
5秒前
6秒前
6秒前
sdzyyfxy完成签到,获得积分10
8秒前
SYLH应助1AN采纳,获得10
8秒前
团团团完成签到 ,获得积分0
8秒前
8秒前
11秒前
13秒前
大个应助nihao采纳,获得10
14秒前
14秒前
加布发布了新的文献求助30
14秒前
小太阳发布了新的文献求助10
14秒前
善学以致用应助molly采纳,获得10
14秒前
米大王发布了新的文献求助10
15秒前
BAITIAN完成签到,获得积分20
16秒前
17秒前
19秒前
19秒前
majuanwei完成签到,获得积分10
20秒前
脑洞疼应助米大王采纳,获得10
21秒前
加布完成签到,获得积分10
22秒前
23秒前
啦咯哦哦完成签到 ,获得积分20
23秒前
24秒前
mc发布了新的文献求助10
24秒前
香蕉觅云应助liulei采纳,获得10
25秒前
25秒前
25秒前
25秒前
meng发布了新的文献求助10
26秒前
26秒前
27秒前
28秒前
isfj发布了新的文献求助10
29秒前
小马甲应助qinghe采纳,获得10
29秒前
JamesPei应助FERN0826采纳,获得10
29秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819177
求助须知:如何正确求助?哪些是违规求助? 3362253
关于积分的说明 10416174
捐赠科研通 3080484
什么是DOI,文献DOI怎么找? 1694511
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768388