AI-SNPS2: A Multi-Layered LC-MS/MS Platform Integrating Molecular Networking and Retention Time Prediction for Identifying Controlled and New Psychoactive Substances

化学 保留时间 色谱法
作者
So Yeon Lee,Jihyun Lee,Jaewoo Song,Mon‐Juan Lee,Hang‐Ji Ok,Eunyoung Han,Youngmin Hong,Han Bin Oh
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.5c02830
摘要

The emergence of unknown controlled substances poses a significant challenge in forensic and analytical sciences. While liquid chromatography–tandem mass spectrometry (LC–MS/MS) enables identification of compounds through spectral database matching, it remains limited for synthesized analogues not present in existing libraries. To address this gap, we developed AI-SNPS2 (Artificial Intelligence Screener for Narcotic Drugs and New Psychoactive Substances 2), an enhanced version of our previously reported screening software. AI-SNPS2 is structured into five integrated layers: LC–MS Viewer, AI Classifier, Identifier, NetBuilder (a GNPS-inspired molecular networking module), and RT Predictor (a machine learning-based retention time prediction module). These layers allow structural analogue detection via spectral similarity and chromatographic plausibility filtering, thereby extending identification capabilities beyond conventional spectral search. The RT Predictor layer incorporates four regression models─artificial neural network (ANN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGBoost)─trained on 42 molecular descriptors from 164 controlled substances. All models exhibited strong performance, with XGBoost achieving the highest accuracy (R2 = 0.964, MAE = 0.585). When applied with the RT calibration function, deviations were typically within a few minutes on a 110 min gradient, demonstrating the RT predictor's utility for candidate filtering. The software's utility was further evaluated by spiking JWH-019, JWH-015, and JWH-302 into two complex matrices; both were successfully identified through integration of molecular networking (MN) and hybrid similarity search (HSS) algorithm. Furthermore, evaluation using five additional compounds demonstrated that AI-SNPS2 is a highly promising tool for detecting compounds absent from existing databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小于要毕业完成签到,获得积分10
1秒前
666发布了新的文献求助10
1秒前
乐观迎荷完成签到,获得积分10
1秒前
陈佳琦完成签到,获得积分10
2秒前
hh发布了新的文献求助10
2秒前
李子木完成签到,获得积分10
2秒前
HMMXC完成签到,获得积分20
3秒前
杏林居士完成签到,获得积分10
4秒前
FashionBoy应助wzy采纳,获得30
4秒前
马金金发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
邓希静发布了新的文献求助10
6秒前
lingo完成签到 ,获得积分10
7秒前
大模型应助cocopan采纳,获得10
9秒前
122319应助Yian采纳,获得30
9秒前
10秒前
xyhua925发布了新的文献求助10
11秒前
11秒前
Chaimengdi发布了新的文献求助10
11秒前
Jacky应助Su采纳,获得10
12秒前
12秒前
斯文曼波应助jinsijia采纳,获得10
12秒前
14秒前
14秒前
IM小红旗发布了新的文献求助10
14秒前
14秒前
uu完成签到,获得积分20
15秒前
zzz琪完成签到,获得积分10
16秒前
邓希静完成签到,获得积分10
17秒前
17秒前
17秒前
caleb完成签到 ,获得积分10
20秒前
20秒前
淡定鱼完成签到,获得积分10
21秒前
马金金完成签到,获得积分10
21秒前
浮游应助lingo采纳,获得10
21秒前
whisper完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397228
求助须知:如何正确求助?哪些是违规求助? 4517421
关于积分的说明 14063983
捐赠科研通 4429352
什么是DOI,文献DOI怎么找? 2432332
邀请新用户注册赠送积分活动 1424830
关于科研通互助平台的介绍 1403865