Blockchain Meets Federated Learning in Healthcare: A Systematic Review With Challenges and Opportunities

块链 计算机科学 医疗保健 联营 数据科学 大数据 单点故障 计算机安全 互联网 知识管理 万维网 计算机网络 数据挖掘 人工智能 经济增长 经济
作者
Raushan Myrzashova,Saeed Hamood Alsamhi,Alexey V. Shvetsov,Ammar Hawbani,Xi Wei
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (16): 14418-14437 被引量:76
标识
DOI:10.1109/jiot.2023.3263598
摘要

Recently, innovations in the Internet of Medical Things (IoMT), information and communication technologies, and machine learning (ML) have enabled smart healthcare. Pooling medical data into a centralized storage system to train a robust ML model, on the other hand, poses privacy, ownership, and regulatory challenges. Federated learning (FL) overcomes the prior problems with a centralized aggregator server and a shared global model. However, there are two technical challenges: 1) FL members need to be motivated to contribute their time and effort and 2) the centralized FL server may not accurately aggregate the global model. Therefore, combining the blockchain and FL can overcome these issues and provide high-level security and privacy for smart healthcare in a decentralized fashion. This study integrates two emerging technologies, blockchain and FL, for healthcare. We describe how blockchain-based FL plays a fundamental role in improving competent healthcare, where edge nodes manage the blockchain to avoid a single point of failure, while IoMT devices employ FL to use dispersed clinical data fully. We discuss the benefits and limitations of combining both technologies based on a content analysis approach. We emphasize three main research streams based on a systematic analysis of blockchain-empowered: 1) IoMT; 2) electronic health records (EHRs) and electronic medical records (EMRs) management; and 3) digital healthcare systems (internal consortium/secure alerting). In addition, we present a novel conceptual framework of blockchain-enabled FL for the digital healthcare environment. Finally, we highlight the challenges and future directions of combining blockchain and FL for healthcare applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油完成签到,获得积分10
1秒前
2秒前
清脆初晴完成签到,获得积分10
2秒前
aniu完成签到,获得积分10
3秒前
mikefei完成签到,获得积分10
3秒前
Coffee完成签到 ,获得积分0
3秒前
忧伤的觅珍完成签到,获得积分10
4秒前
明某到此一游完成签到 ,获得积分10
5秒前
暗示完成签到 ,获得积分10
6秒前
寄托完成签到 ,获得积分10
6秒前
mikefei发布了新的文献求助10
7秒前
机灵一兰完成签到 ,获得积分10
8秒前
8秒前
8秒前
dingyang41完成签到,获得积分10
8秒前
ZhangZaikuan完成签到,获得积分10
9秒前
guajiguaji完成签到,获得积分10
9秒前
9秒前
亭子完成签到 ,获得积分10
9秒前
zheng完成签到 ,获得积分10
10秒前
10秒前
雁塔完成签到 ,获得积分10
11秒前
杨江丽发布了新的文献求助10
13秒前
无敌幸运儿完成签到 ,获得积分10
15秒前
健忘绮南发布了新的文献求助10
15秒前
GreenT完成签到,获得积分10
16秒前
郁盈发布了新的文献求助10
17秒前
Kalimba完成签到,获得积分10
17秒前
无私小小完成签到,获得积分10
17秒前
Green完成签到,获得积分10
22秒前
张张张xxx完成签到,获得积分10
23秒前
huahua完成签到 ,获得积分10
25秒前
666完成签到,获得积分10
27秒前
css完成签到,获得积分10
27秒前
shuang完成签到,获得积分10
28秒前
小匹夫完成签到,获得积分10
30秒前
老迟到的幼枫完成签到,获得积分10
30秒前
怕黑的凝旋完成签到 ,获得积分10
30秒前
一只完成签到,获得积分10
30秒前
奋斗的夜山完成签到 ,获得积分10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359417
关于积分的说明 10402560
捐赠科研通 3077261
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743