Blockchain Meets Federated Learning in Healthcare: A Systematic Review With Challenges and Opportunities

块链 计算机科学 医疗保健 联营 数据科学 大数据 单点故障 计算机安全 互联网 知识管理 万维网 计算机网络 数据挖掘 人工智能 经济增长 经济
作者
Raushan Myrzashova,Saeed Hamood Alsamhi,Alexey V. Shvetsov,Ammar Hawbani,Xi Wei
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (16): 14418-14437 被引量:76
标识
DOI:10.1109/jiot.2023.3263598
摘要

Recently, innovations in the Internet of Medical Things (IoMT), information and communication technologies, and machine learning (ML) have enabled smart healthcare. Pooling medical data into a centralized storage system to train a robust ML model, on the other hand, poses privacy, ownership, and regulatory challenges. Federated learning (FL) overcomes the prior problems with a centralized aggregator server and a shared global model. However, there are two technical challenges: 1) FL members need to be motivated to contribute their time and effort and 2) the centralized FL server may not accurately aggregate the global model. Therefore, combining the blockchain and FL can overcome these issues and provide high-level security and privacy for smart healthcare in a decentralized fashion. This study integrates two emerging technologies, blockchain and FL, for healthcare. We describe how blockchain-based FL plays a fundamental role in improving competent healthcare, where edge nodes manage the blockchain to avoid a single point of failure, while IoMT devices employ FL to use dispersed clinical data fully. We discuss the benefits and limitations of combining both technologies based on a content analysis approach. We emphasize three main research streams based on a systematic analysis of blockchain-empowered: 1) IoMT; 2) electronic health records (EHRs) and electronic medical records (EMRs) management; and 3) digital healthcare systems (internal consortium/secure alerting). In addition, we present a novel conceptual framework of blockchain-enabled FL for the digital healthcare environment. Finally, we highlight the challenges and future directions of combining blockchain and FL for healthcare applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪一斩发布了新的文献求助100
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
dandelion123完成签到,获得积分10
3秒前
吱吱发布了新的文献求助10
5秒前
5秒前
OD完成签到 ,获得积分10
6秒前
吴彦祖完成签到,获得积分10
7秒前
桐桐应助机智飞荷采纳,获得10
7秒前
bkagyin应助刘胖胖采纳,获得10
7秒前
8秒前
桐桐应助sian采纳,获得10
9秒前
9秒前
9秒前
鲁西西完成签到,获得积分10
10秒前
积极映梦发布了新的文献求助10
10秒前
LAST发布了新的文献求助10
10秒前
姚驰发布了新的文献求助10
12秒前
齐婷婷发布了新的文献求助10
12秒前
鲁西西发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
zy发布了新的文献求助10
15秒前
15秒前
黄晓杰2024发布了新的文献求助10
16秒前
19秒前
19秒前
Hello应助ghw采纳,获得10
19秒前
刘胖胖发布了新的文献求助10
19秒前
20秒前
木木彡发布了新的文献求助10
20秒前
21秒前
科研通AI6应助小猫laila采纳,获得10
21秒前
隐形曼青应助积极映梦采纳,获得10
23秒前
尽快毕业完成签到 ,获得积分10
25秒前
科研通AI6应助着急的猴采纳,获得10
25秒前
所所应助Nyxal采纳,获得10
28秒前
Augenstern完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421857
求助须知:如何正确求助?哪些是违规求助? 4536813
关于积分的说明 14155261
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442862
邀请新用户注册赠送积分活动 1434244
关于科研通互助平台的介绍 1411370