Lung Nodule Segmentation and Uncertain Region Prediction with an Uncertainty-Aware Attention Mechanism

分割 计算机科学 人工智能 杠杆(统计) 交叉口(航空) 模式识别(心理学) 图像分割 特征(语言学) 注释 尺度空间分割 计算机视觉 语言学 哲学 工程类 航空航天工程
作者
Yu Han,Qiuli Wang,Yue Zhang,Zhulin An,Chen Liu,Xiaohong Zhang,S. Kevin Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1284-1295
标识
DOI:10.1109/tmi.2023.3332944
摘要

Radiologists possess diverse training and clinical experiences, leading to variations in the segmentation annotations of lung nodules and resulting in segmentation uncertainty. Conventional methods typically select a single annotation as the learning target or attempt to learn a latent space comprising multiple annotations. However, these approaches fail to leverage the valuable information inherent in the consensus and disagreements among the multiple annotations. In this paper, we propose an Uncertainty-Aware Attention Mechanism (UAAM) that utilizes consensus and disagreements among multiple annotations to facilitate better segmentation. To this end, we introduce the Multi-Confidence Mask (MCM), which combines a Low-Confidence (LC) Mask and a High-Confidence (HC) Mask. The LC mask indicates regions with low segmentation confidence, where radiologists may have different segmentation choices. Following UAAM, we further design an Uncertainty-Guide Multi-Confidence Segmentation Network (UGMCS-Net), which contains three modules: a Feature Extracting Module that captures a general feature of a lung nodule, an Uncertainty-Aware Module that produces three features for the annotations' union, intersection, and annotation set, and an Intersection-Union Constraining Module that uses distances between the three features to balance the predictions of final segmentation and MCM. To comprehensively demonstrate the performance of our method, we propose a Complex-Nodule Validation on LIDC-IDRI, which tests UGMCS-Net's segmentation performance on lung nodules that are difficult to segment using common methods. Experimental results demonstrate that our method can significantly improve the segmentation performance on nodules that are difficult to segment using conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
曾经荔枝完成签到,获得积分10
刚刚
entang完成签到,获得积分10
刚刚
刚刚
wyz完成签到,获得积分10
1秒前
塔玛希完成签到,获得积分10
1秒前
pufanlg完成签到,获得积分10
1秒前
脸小呆呆完成签到 ,获得积分10
1秒前
19950728完成签到 ,获得积分10
1秒前
LALALADDDD完成签到,获得积分0
1秒前
2秒前
风的味道完成签到,获得积分10
2秒前
许鑫蓁完成签到 ,获得积分10
2秒前
qingli完成签到,获得积分10
2秒前
橘子气泡水完成签到 ,获得积分10
2秒前
3秒前
徐什么宝完成签到,获得积分10
3秒前
xinxiangshicheng完成签到 ,获得积分10
3秒前
聪明乐巧完成签到,获得积分10
4秒前
4秒前
挺帅一男的完成签到,获得积分10
4秒前
4秒前
可可完成签到,获得积分10
4秒前
博士伦666完成签到 ,获得积分10
5秒前
sci发布了新的文献求助10
5秒前
5秒前
体贴薯片完成签到,获得积分10
5秒前
张宁波完成签到,获得积分10
5秒前
5秒前
叶立军完成签到,获得积分10
6秒前
轻狂书生完成签到,获得积分10
7秒前
DaSheng发布了新的文献求助30
7秒前
每天都在找完成签到,获得积分10
8秒前
9秒前
愉快书琴完成签到,获得积分10
9秒前
学术LJ完成签到,获得积分10
10秒前
Akim应助hihao采纳,获得10
10秒前
呆萌幼晴完成签到,获得积分10
10秒前
爱听歌契完成签到 ,获得积分10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808178
求助须知:如何正确求助?哪些是违规求助? 3352864
关于积分的说明 10361092
捐赠科研通 3068918
什么是DOI,文献DOI怎么找? 1685300
邀请新用户注册赠送积分活动 810415
科研通“疑难数据库(出版商)”最低求助积分说明 766130