Fine-mapping causal tissues and genes at disease-associated loci

基因 遗传学 生物 计算生物学 疾病 进化生物学 医学 病理
作者
Benjamin J. Strober,Martin Jinye Zhang,Tiffany Amariuta,Jordan Rossen,Alkes L. Price
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2023.11.01.23297909
摘要

Abstract Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue’s contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO -thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2 -artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5—primarily for autoimmune disease and blood cell traits, including the biologically plausible example of CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
失眠醉易应助水生的凛采纳,获得20
5秒前
上官若男应助cathe采纳,获得10
7秒前
7秒前
10秒前
Orange应助BY采纳,获得10
10秒前
12秒前
迅速的千风完成签到,获得积分10
13秒前
hebrews完成签到,获得积分10
14秒前
银色的溪水完成签到 ,获得积分10
15秒前
小巴黎发布了新的文献求助10
16秒前
无限的山水完成签到,获得积分10
22秒前
23秒前
有魅力的臻完成签到,获得积分10
24秒前
Breeze完成签到 ,获得积分10
26秒前
荷包蛋完成签到,获得积分10
26秒前
顺利的奇异果完成签到,获得积分10
28秒前
负责的方盒完成签到,获得积分10
29秒前
Anoxia发布了新的文献求助10
32秒前
李笑完成签到,获得积分10
33秒前
33秒前
圈圈完成签到 ,获得积分10
35秒前
时尚语梦完成签到 ,获得积分10
35秒前
苹果完成签到,获得积分10
36秒前
高大的冰双完成签到,获得积分10
36秒前
寒江雪完成签到,获得积分10
36秒前
37秒前
38秒前
tjr关注了科研通微信公众号
39秒前
Akim应助孙珍珍采纳,获得10
39秒前
科研通AI5应助敏静采纳,获得10
39秒前
LeungYM完成签到 ,获得积分10
41秒前
活力的尔阳完成签到,获得积分10
42秒前
42秒前
zydd发布了新的文献求助10
48秒前
tjr发布了新的文献求助10
48秒前
Jasper应助Anoxia采纳,获得10
53秒前
楼下小黑完成签到 ,获得积分10
54秒前
cihieini发布了新的文献求助10
55秒前
背后归尘完成签到,获得积分10
56秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841908
求助须知:如何正确求助?哪些是违规求助? 3383960
关于积分的说明 10532073
捐赠科研通 3104182
什么是DOI,文献DOI怎么找? 1709532
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878