Rapid Landslide Extraction from High-Resolution Remote Sensing Images Using SHAP-OPT-XGBoost

山崩 计算机科学 Boosting(机器学习) 遥感 超参数 阿达布思 人工智能 梯度升压 地质学 随机森林 支持向量机 地震学
作者
Nankai Lin,Zhang Di,Shanshan Feng,Kai Ding,Libing Tan,Bin Wang,Tao Chen,Weile Li,Xiaoai Dai,Jianping Pan,Fei‐Fei Tang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (15): 3901-3901
标识
DOI:10.3390/rs15153901
摘要

Landslides, the second largest geological hazard after earthquakes, result in significant loss of life and property. Extracting landslide information quickly and accurately is the basis of landslide disaster prevention. Fengjie County, Chongqing, China, is a typical landslide-prone area in the Three Gorges Reservoir Area. In this study, we newly integrate Shapley Additive Explanation (SHAP) and Optuna (OPT) hyperparameter tuning into four basic machine learning algorithms: Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Additive Boosting (AdaBoost). We construct four new models (SHAP-OPT-GBDT, SHAP-OPT-XGBoost, SHAP-OPT-LightGBM, and SHAP-OPT-AdaBoost) and apply the four new models to landslide extraction for the first time. Firstly, high-resolution remote sensing images were preprocessed, landslide and non-landslide samples were constructed, and an initial feature set with 48 features was built. Secondly, SHAP was used to select features with significant contributions, and the important features were selected. Finally, Optuna, the Bayesian optimization technique, was utilized to automatically select the basic models’ best hyperparameters. The experimental results show that the accuracy (ACC) of these four SHAP-OPT models was above 92% and the training time was less than 1.3 s using mediocre computational hardware. Furthermore, SHAP-OPT-XGBoost achieved the highest accuracy (96.26%). Landslide distribution information in Fengjie County from 2013 to 2020 can be extracted by SHAP-OPT-XGBoost accurately and quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻冷风发布了新的文献求助10
刚刚
刚刚
1秒前
慕青应助按揭采纳,获得10
2秒前
3秒前
查丽发布了新的文献求助10
4秒前
4秒前
KE完成签到,获得积分10
4秒前
啊唔完成签到 ,获得积分10
4秒前
阳光下的背影完成签到,获得积分10
5秒前
虚心柠檬完成签到 ,获得积分10
6秒前
mslln发布了新的文献求助10
7秒前
Fiona完成签到 ,获得积分10
9秒前
清欢发布了新的文献求助10
9秒前
Flyzz发布了新的文献求助10
9秒前
坦率无剑完成签到,获得积分10
10秒前
shuo0976应助疯狂的化蛹采纳,获得10
11秒前
煲煲煲仔饭完成签到 ,获得积分10
15秒前
16秒前
思源应助清欢采纳,获得10
16秒前
17秒前
17秒前
17秒前
MZT完成签到,获得积分10
19秒前
叶95发布了新的文献求助10
20秒前
勤恳傲儿完成签到,获得积分10
20秒前
Akim应助tongke采纳,获得10
20秒前
江幻天发布了新的文献求助10
21秒前
尊敬的凝丹完成签到 ,获得积分10
21秒前
纳米酶催化完成签到,获得积分10
21秒前
22秒前
天天快乐应助云起龙都采纳,获得10
23秒前
yyy完成签到,获得积分10
24秒前
乐乐应助迪迦采纳,获得10
24秒前
Miao完成签到,获得积分10
24秒前
24秒前
陶玲完成签到,获得积分10
25秒前
26秒前
科研通AI5应助小达采纳,获得10
27秒前
成就的连虎完成签到,获得积分10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845874
求助须知:如何正确求助?哪些是违规求助? 3388228
关于积分的说明 10552145
捐赠科研通 3108835
什么是DOI,文献DOI怎么找? 1713137
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927