数学
二面体群
对称群
对称(几何)
霍普夫分叉
分叉
干草叉分叉
齐次空间
非线性系统
群(周期表)
对称性破坏
多边形(计算机图形学)
二面角
数学分析
纯数学
几何学
量子力学
物理
帧(网络)
氢键
电信
计算机科学
分子
作者
Martin Golubitsky,Ian Stewart
出处
期刊:Contemporary mathematics
日期:1986-01-01
卷期号:: 131-173
被引量:101
标识
DOI:10.1090/conm/056/855088
摘要
The theory of Hopf bifurcation with symmetry developed by Golubitsky and Stewart (1985) is applied to systems of ODEs having the symmetries of a regular polygon, that is, whose symmetry group is dihedral. The existence and stability of symmetry-breaking branches of periodic solutions are considered. In particular, these results are applied to a general system of n nonlinear oscillators coupled symmetrically in a ring, and the generic oscillation patterns are described. It is found that the symmetry can force some oscillators to have twice the frequency of others. The case of four oscillators has exceptional features.
科研通智能强力驱动
Strongly Powered by AbleSci AI