Departure Time Choice Models in Urban Transportation Systems Based on Mean Field Games

排队 数学优化 计算机科学 博弈论 点(几何) 领域(数学) 数理经济学 数学 几何学 程序设计语言 纯数学
作者
Mostafa Ameli,Mohamad Sadegh Shirani Faradonbeh,Jean‐Patrick Lebacque,Hossein Abouee‐Mehrizi,Ludovic Leclercq
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:56 (6): 1483-1504 被引量:23
标识
DOI:10.1287/trsc.2022.1147
摘要

Departure time choice models play a crucial role in determining the traffic load in transportation systems. Most studies that consider departure time user equilibrium (DTUE) problems make assumptions on the user characteristics (e.g., distribution of desired arrival time and trip length) or dynamic traffic model (e.g., classic bathtub or point queue models) in order to analyze the problem. This paper relaxes these assumptions and introduces a new framework to model and analyze the DTUE problem based on the so-called mean field games (MFGs) theory. MFGs allow us to define players at the microscopic level similar to classical game theory models, translating the effect of players’ decisions to macroscopic models. In this paper, we first present a continuous departure time choice model and investigate the equilibria of the system. Specifically, we demonstrate the existence of the equilibrium and characterize the DTUE. Then, a discrete approximation of the system is provided based on deterministic differential game models to numerically obtain the equilibrium of the system. To examine the efficiency of the proposed model, we compare it with the departure time choice models in the literature. We apply our framework to a standard test case and observe that the solutions obtained based on our model are 5.6% better in terms of relative cost compared with the solutions determined based on previous studies. Moreover, our proposed model converges with fewer iterations than the reference solution method in the literature. Finally, the model is scaled up to the real test case corresponding to the whole Lyon metropolis with a real demand pattern. The results show that the proposed framework is able to tackle a much larger test case than usual to include multiple preferred travel times and heterogeneous trip lengths more accurately than existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hina发布了新的文献求助10
2秒前
收手吧大哥应助材1采纳,获得20
2秒前
3秒前
abao完成签到 ,获得积分10
4秒前
夏夜完成签到 ,获得积分10
7秒前
天空中飞翔的鱼完成签到,获得积分10
7秒前
瀚泛完成签到,获得积分10
8秒前
小生怕怕完成签到,获得积分10
13秒前
cdercder应助沐熙采纳,获得10
13秒前
LY_Qin完成签到,获得积分10
14秒前
16秒前
17秒前
18秒前
风笑非完成签到,获得积分10
18秒前
传奇3应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得50
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
huahua应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
科研菜菜鸡完成签到 ,获得积分10
20秒前
geliangjun发布了新的文献求助10
20秒前
复杂的芮完成签到 ,获得积分10
20秒前
氢氧化钠Li完成签到,获得积分10
22秒前
咕咕咕完成签到 ,获得积分10
23秒前
精明一寡发布了新的文献求助10
23秒前
24秒前
yuanlee2011完成签到,获得积分0
25秒前
迅速天空完成签到 ,获得积分10
25秒前
26秒前
26秒前
29秒前
一帆风顺发布了新的文献求助10
29秒前
菠萝披萨完成签到,获得积分10
29秒前
科研通AI5应助Scout采纳,获得10
31秒前
真实的俊驰完成签到,获得积分10
31秒前
三人水明完成签到 ,获得积分10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843681
求助须知:如何正确求助?哪些是违规求助? 3385989
关于积分的说明 10543401
捐赠科研通 3106790
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823937
科研通“疑难数据库(出版商)”最低求助积分说明 774390