已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TrustBCFL: Mitigating Data Bias in IoT Through Blockchain-Enabled Federated Learning

块链 计算机科学 物联网 计算机网络 分布式计算 计算机安全
作者
Sisi Zhou,Kuanching Li,Yuxiang Chen,Ce Yang,Wei Liang,Albert Y. Zomaya
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25648-25662 被引量:28
标识
DOI:10.1109/jiot.2024.3379363
摘要

The development of the Internet of Things (IoT), Big Data, and deep learning technologies has brought convenience to people's lives. As personal privacy data protection laws and regulations tighten, the cost of acquiring high-quality annotated data from vast IoT datasets has significantly increased, resulting in prevalent issues such as data acquisition challenges and label noise in training data. In this work, we focus on the demand for privacy protection and trustworthy sharing of IoT data, and propose a method for addressing data bias in IoT through federated learning and blockchain by utilizing the theory of local intrinsic dimension (LID), incorporating committee consensus to achieve noise label identification and correction at the data level, reducing information loss in the training data. Additionally, it performs screening of low-quality local model updates at the model level, leveraging blockchain technology that addresses the single point of failure issues in traditional federated learning, ensuring the performance and security of the federated learning models. Analysis, proof of convergence, and experimentations on the proposed framework demonstrate good security and robustness in noisy environments, effectively addressing data bias in intelligent IoT settings. In scenarios with a noise level of 0.3, 0.6, and 0.9, the average model accuracy improved respectively by 7.75%, 7.30%, and 14.04% compared to FedAvg. Similarly, when compared to FedCorr, the average improvement in model accuracy is 5.19%, 3.63%, and 8.74% respectively. Moreover, the training time remains within an acceptable range for all cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的阿拉蕾完成签到 ,获得积分10
2秒前
嵩嵩发布了新的文献求助10
2秒前
小白完成签到,获得积分10
2秒前
壮观迎蕾发布了新的文献求助10
3秒前
3秒前
刘珊珊633完成签到,获得积分20
3秒前
科研启动完成签到,获得积分10
7秒前
刘珊珊633发布了新的文献求助10
8秒前
小昊完成签到 ,获得积分10
10秒前
万能图书馆应助xuwenli采纳,获得10
10秒前
寻道图强完成签到,获得积分0
10秒前
10秒前
12秒前
朱博发布了新的文献求助10
15秒前
sss完成签到 ,获得积分10
15秒前
12完成签到 ,获得积分10
15秒前
chenhui完成签到,获得积分10
17秒前
万能图书馆应助刘珊珊633采纳,获得10
19秒前
20秒前
20秒前
nPgA2o应助梅天豪采纳,获得10
21秒前
流星雨完成签到 ,获得积分10
23秒前
香果发布了新的文献求助10
24秒前
牛魔王发布了新的文献求助10
25秒前
28秒前
28秒前
整齐的蜻蜓完成签到 ,获得积分10
29秒前
無端完成签到 ,获得积分10
30秒前
科研小巴发布了新的文献求助10
32秒前
111完成签到 ,获得积分10
34秒前
充电宝应助小白菜采纳,获得10
34秒前
xuwenli发布了新的文献求助10
34秒前
TTZ完成签到 ,获得积分10
36秒前
斯文败类应助张欣宇采纳,获得10
37秒前
Ashore完成签到 ,获得积分10
38秒前
小土完成签到,获得积分10
39秒前
畅快的饼干完成签到 ,获得积分10
40秒前
41秒前
奔跑石小猛完成签到,获得积分10
42秒前
YU完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534073
求助须知:如何正确求助?哪些是违规求助? 4622204
关于积分的说明 14581939
捐赠科研通 4562306
什么是DOI,文献DOI怎么找? 2500058
邀请新用户注册赠送积分活动 1479653
关于科研通互助平台的介绍 1450782