Knowledge Enhanced Vision and Language Model for Multi-Modal Fake News Detection

计算机科学 误传 情态动词 社会化媒体 情报检索 知识图 互联网 图形 假新闻 语言模型 人工智能 万维网 互联网隐私 化学 高分子化学 计算机安全 理论计算机科学
作者
Xingyu Gao,Xi Wang,Zhenyu Chen,Wei Zhou,Steven C. H. Hoi
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8312-8322 被引量:11
标识
DOI:10.1109/tmm.2023.3330296
摘要

The rapid dissemination of fake news and rumors through the Internet and social media platforms poses significant challenges and raises concerns in the public sphere. Automatic detection of fake news plays a crucial role in mitigating the spread of misinformation. While recent approaches have focused on leveraging neural networks to improve textual and visual representations in multi-modal fake news analysis, they often overlook the potential of incorporating knowledge information to verify facts within news articles. In this paper, we propose a knowledge enhanced vision and language model for multi-modal fake news detection. Our proposed model integrates information from large scale open knowledge graphs to augment its ability to discern the veracity of news content. Unlike previous methods that utilize separate models to extract textual and visual features, we synthesize a unified model capable of extracting both types of features simultaneously. To represent news articles, we introduce a graph structure where nodes encompass entities, relationships extracted from the textual content, and objects depicted in associated images. By utilizing the knowledge graph, we establish meaningful relationships between nodes within the news articles. Experimental evaluations on a real-world multi-modal dataset from Twitter demonstrate significant performance improvement by incorporating knowledge information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
万能图书馆应助qqqq采纳,获得10
2秒前
NexusExplorer应助qqqq采纳,获得10
2秒前
NexusExplorer应助qqqq采纳,获得10
2秒前
Lucas应助qqqq采纳,获得10
2秒前
烟花应助qqqq采纳,获得10
2秒前
善学以致用应助qqqq采纳,获得10
2秒前
李逸玄应助qqqq采纳,获得10
3秒前
CodeCraft应助qqqq采纳,获得10
3秒前
FashionBoy应助qqqq采纳,获得10
3秒前
英俊的铭应助qqqq采纳,获得10
3秒前
束之高阁发布了新的文献求助10
4秒前
4秒前
Hello应助落后的书白采纳,获得10
4秒前
北城发布了新的文献求助10
7秒前
平常的纸飞机完成签到,获得积分10
7秒前
852应助戈壁采纳,获得10
9秒前
Migtyaaron完成签到 ,获得积分10
9秒前
10秒前
12秒前
12秒前
思源应助bofu采纳,获得10
12秒前
13秒前
Jro发布了新的文献求助10
15秒前
发发发布了新的文献求助10
15秒前
顾欢欢完成签到 ,获得积分10
16秒前
17秒前
19秒前
wanci应助咿呀采纳,获得10
19秒前
21秒前
打打应助研友_ZragOn采纳,获得10
22秒前
bkagyin应助bofu采纳,获得10
22秒前
23秒前
杳鸢应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
杳鸢应助科研通管家采纳,获得10
23秒前
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得30
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307